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Provenance data of a system resource provides historical information including the pedigree

of and past activities on the resource. This information is useful and has been demonstrated to

be effectively usable in various computing systems in different scientific as well as business ap-

plication domains. Incorporating provenance-awareness into systems has garnered considerable

recent attention and been the focus of academic and industrial communities. One of the concerns

is the question of how cyber security can be achieved and enhanced in systems that are provenance

aware. Security tasks include how to utilize information and knowledge of provenance data to

enhance existing issues of insider threat detection, malicious data dissemination, et cetera. In sce-

narios where provenance data is more critical than the associated system data, it is also essential to

secure the provenance data.

This dissertation primarily investigates the security of provenance-aware systems from access

control point of view. In provenance-aware systems, the information can be utilized for secure

access control of the regular system resources as well as the associated provenance data of such

resources. The two approaches can be termed provenance-based access control (PBAC) and prove-

nance access control (PAC). A provenance data model, which is built on causality dependencies of

provenance entities capturing system events, provides a foundation for achieving desirable access

control goals. Built on the data model, the focus of this dissertation is on provenance-based access

control models that enable efficient and expressive access control features.

PBAC models can be applied in single, distributed, and multi-tenant cloud systems. This dis-

sertation demonstrates the application of PBAC in a single system through extending the standard

XACML framework and evaluate a proof-of-concept implementation in the context of an online
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homework grading system. The dissertation also demonstrates the possibility of incorporating

PBAC mechanisms into cloud computing systems through developing and evaluating a proof-

of-concept PBAC extension to several service components of the open-source OpenStack cloud

management software. The study on a variety of deployment architecture approaches further con-

solidates the insights and knowledge of the process. Experimental results from these case studies

demonstrate the feasibility of the approach and promise enhanced and secure access control foun-

dation for future computing systems.
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Chapter 1: INTRODUCTION

Provenance is a universal term in art which refers to the origin and history of an art artifact. For

example, the provenance of the ever famous painting “Mona Lisa”, in the simplest form, tells the

original painter is Leonardo Da Vinci, the Louvre museum is where the painting is located, and has

inspired various creative and fascinating parodied artworks. More detailed provenance can provide

information on past ownerships as well as any restoration works ever performed on the painting.

The linkage of such past information to the painting in the present allows art enthusiasts to further

appreciate and experts to correctly judge the authenticity and value of the art object.

When computer scientists and researchers adopt the concept into the digital world, they gener-

ally define the notion as the origin and all processes that led to any specific state of a data object

within an information system. An example can be the documentation of software such as the Win-

dows operating system and its evolution following the release of different versions over the years.

Essentially, the provenance of a data object reflects who the original creator is, who have been

involved in accessing the object, how such processes have been performed and what additional

information has been captured. A provenance-aware system is capable of capturing, storing, and

providing such information, as provenance data, for any applicable utility and purpose. Provenance

data essentially forms a direct-acyclic graph and provides a linkage structure of history informa-

tion of any data object of interest. This characteristic enables and facilitates a traversal capability

on provenance data from which useful information can be extracted and utilized for different tasks

and purposes.

1.1 Motivations

In recent years, the academic and industrial communities have witnessed the rapid growth of digital

systems influence on human beings on the levels of personal daily lives to sophisticated financial

transactions that are vital to global commerce. As a result of this phenomenon of information

explosion, the growth of data that is being generated and exchanged by all involved parties also
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explodes exponentially. With the spurt in data quantity, there arises a need for more insights and

knowledge on these data-sets. Provenance data becomes the adopted solution for achieving this

thorough knowledge goal.

In fact, many works have been performed based on motivations for provenance presence in

scientific and business domains [12, 32, 39, 81, 82]. In the scientific research community where

collaborative efforts are increasingly gaining momentum through the use of dynamic Virtual Or-

ganization [36] for sharing data, issues involving trust, quality, and copyright of data become very

important. In many application domains such as life sciences research or material engineering, it

becomes critical to determine that the available data-sets, being used or generated, possess high

veracity and quality. In these settings, the associated provenance data can provide trustworthy and

detailed sources of input data and all relevant transformations that have been performed. In the

business domain, data communication processes are vital to organizational successes and bad data

identification is critical to the organizations’ operations. Collected provenance data can assist in

this identification process.

Provenance data originally found useful purposes in database systems but has over the years

become an integrated and significant part of many research areas including semantic webs, sci-

entific work-flows, et cetera [18, 23, 43]. In each of these areas, provenance data generates new

use cases and helps improve methodologies in achieving the respective computation goals. As a

result of the different nature of each domain, the corresponding perspectives on provenance data

also vary. Specifically, as different aspects of provenance are important to each specific domain,

different data models for provenance are created to address these unique traits. As a consequence,

it is a challenge for applications to exchange or utilize the provenance data of other applications.

This led to a movement by the research community to collaborate on realizing a general purpose

provenance data model that can be useful in various domains and enable inter-domain connections

of provenance data [57]. Such efforts are further reinforced with the advent of cloud computing

as the dominant trend of computation. In various works, researchers recognize the integral role of

provenance data within this new computing paradigm [28, 59, 60]. Essentially, in a cloud comput-
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ing environment that is dynamic and heterogeneous, service components, which separately manage

but share physical and virtual resources, must inter-operate. Collecting and storing the provenance

data of these resources can help cloud administrators and cloud users in management as well as

utilization of these resources. At the same time, it is also crucial to achieve provenance under-

standing and communication between application domains that utilize the cloud infrastructure and

resources.

As provenance finds its importance within many different areas of computer science, researchers

from these areas also start recognizing the necessity for the protection and security of provenance

data. A majority of recent research places a strong emphasis on methods and mechanisms to pro-

tect critical provenance information. On the other hand, other researchers focus on utilizing prove-

nance information for security purposes including intrusion detection, insider threats, etc. Finding

the solutions for addressing the security issues in a provenance-aware environment, either through

using provenance data to enhance the security of the system or taking the priority in protecting the

provenance data itself, remains a critical and exciting challenge for the both the academic as well

as industrial communities.

1.2 Research Challenges

The myriad of software applications available in both private and public sectors demand more

complex protection mechanisms for the resulting large networks of information flow. Capturing

and storing provenance data in an information system enable higher trustworthiness and elevates

the utility of the underlying data. Provenance-aware systems bring about additional utilities and

enhancements that are uniquely enabled with provenance information. Specifically, as data prove-

nance provides utilities such as pedigree information search, usage tracking and versioning, using

provenance data for access control allows more versatile control capability such as controls based

on pedigree information, past usage of data, past activity of users and versioning information. This

further supports dynamic separation of duties and work-flow controls in stand-alone and multi-

tenant cloud systems.
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In this dissertation, the emphasis is placed on exploring the utility of provenance data to ele-

vate access control mechanisms that can bring about the enhancement of many computing systems’

security goals. Specifically, provenance-based access control (PBAC) mechanisms have great po-

tential to become a strong foundation for securing data in single, distributed, and cloud systems. In

this line of research, there have been relatively few works which establish effective and standard-

ized models and mechanisms for access control security in such provenance-aware systems.

1.2.1 Enhancing Features of Access Control Approaches

Throughout the history of access control, there have been various notions that were used as basic

decision parameters in access control policies such as clearance, role, trust-level, user-relationship,

risk, et cetera. These traditional access control mechanisms are built for specific purposes and

are not easily configured to address the complex demands associated with these new technologies

[17, 41, 42, 84]. While this may be true, it is possible that access control systems, which are built

upon provenance data by fully utilizing its unique characteristics, can provide a foundation for

new access control mechanisms that are highly capable of supporting features that were not easily

achievable with traditional access control solutions.

Dynamic Separation of Duties (DSOD) is a well-known and important concept in cyber secu-

rity, which has been extensively studied in the literature. For example, in the context of role-based

access control, a certain set of roles and the associated permissions can be designated as conflicting

and therefore cannot be assumed by a particular user of the system. Various other constraints of

conflicting aspects also exist and are discussed in the literature. The published literature mostly

assumes that necessary information for enabling DSOD constraints is readily available. As such,

there has been little discussion on the tasks of capturing, storing, extracting, and utilizing necessary

historical information. Since this information is often in the form of system events history, prove-

nance data is naturally suitable as the source for DSOD-related information. DSOD concerns can

be found in many applications. This dissertation illustrates the application of PBAC in addressing

DSOD issues through a homework grading system. In brief, in such a system, students can upload
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a homework document to the system, after which they can replace it multiple times before they

submit the homework. Once it is submitted, the homework can be reviewed by other students or

designated graders until it is graded by the teaching assistant (TA).

In addition to the capability to handle traditional DSOD issues, provenance-based access con-

trol can enable additional DSOD features that have not been discussed previously. As shown in

Chapter 4.2.5, dependency path-aware refers to cases where the units of conflict are not individual

roles, objects, or actions. Instead, conflicts can arise between different dependency paths, which

more expressively capture meaningful relations in the system. Another feature, past attribute-

aware, refers to how context information of past transactions can be utilized for DSOD constraints.

Both of these novel features are further discussed in the chapter. The identification of these addi-

tional issues can play a significant part in an environment with more dynamic resource interaction

such as the cloud.

1.2.2 Security Aspects of Provenance in Cloud Infrastructure-as-a-Service

Cloud computing paradigm has recently risen as a popular approach that allows efficient utilization

of computing resources that can simultaneously minimize related costs and achieve massive scala-

bility. The concept has real-world practicality and development efforts are heavily invested by both

academic and industrial sectors [8]. One of the important properties of cloud computing is multi-

tenancy [56], where resources within a physical system are allocated and divided between tenants.

The notion of tenants allows organized and secure administration of resources and management of

privileged users/consumers of the resources.

In most recent cloud Infrastructure-as-a-Service management software such as OpenStack, tra-

ditional access control mechanisms have been the most common authorization solutions. More

specifically, most cloud systems utilize a variation of role-based access control or simplified forms

of attribute-based access control to address their authorization requirement. In most cases, these

forms of access control mechanisms are sufficient in handling the specific cloud software’s autho-

rization requirements. However, this dissertation envisions that more expressive and finer-grained
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access control mechanisms are necessary to accompany the ever evolving state of cloud computing.

Ultimately, provenance-based access control can be beneficial for the cloud.

Essentially, PBAC can effectively be employed in a multi-tenant Infrastructure-as-a-Service

(IaaS) cloud environment. This dissertation defines a tenant from the perspective of a Cloud Ser-

vice Provider (CSP), as an independent customer of the CSP responsible for paying for services

used by that tenant. Payment is the norm in a public cloud while in a community cloud there often

will be other methods for a tenant to obtain services. From the perspective of the tenant, a tenant

could be a private individual, an organization big or small, a department within a larger organiza-

tion, an ad hoc collaboration, and so on. This aspect of a tenant is typically not visible to the CSP

in a public cloud.

In this environment, users (e.g., Virtual Machine (VM) creators) and data objects (e.g., VM

images, VM snapshots, VM instances) are involved in multiple tenants that are being configured

with different authorization settings. The utilization of PBAC within a multi-tenant environment

under multiple controlling principals can serve to elevate the authorization capabilities of cloud

IaaS infrastructures, including but not limited to secure information flow control and prevention of

privileges abuse. For example, a VM resource can be created in one tenant, shared and potentially

modified in another tenant and then saved as an image for later use. Tenant administrators can

specify access control on the shared VM resource based on its provenance data capturing its pedi-

gree in the original tenant. In order to achieve these authorization goals with PBAC, it is essential

to enable tenant-awareness in PBAC. Furthermore, it is necessary to develop an infrastructure for

adopting PBAC mechanisms into an existing cloud platform. To the author’s knowledge, there do

not exist effective provenance-based access control mechanisms for cloud computing platforms.

The open-source, popular and ever-growing OpenStack platform can benefit greatly from the in-

corporation of PBAC. It remains to be seen how the incorporation process fares and how it can

provide a starting step to enable PBAC in other cloud computing platform solutions as well.
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1.3 Thesis

The central thesis of this dissertation is as follows:

Provenance data forms a directed-acyclic graph where graph edges exhibit the causality depen-

dency relations between graph nodes that represent provenance entities. A provenance data model

that can enable and facilitate the capture, storage and utilization of such information through

regular expression based path patterns can provide a foundation for enhancing access control

mechanisms. In essence, provenance-based access control models can provide effective and ex-

pressive capabilities in addressing access control issues, including traditional and previously not

discussed dynamic separation of duties, in single systems, distributed systems, and within a single

tenant and across multiple tenants cloud environment.

1.4 Summary of Contributions

In this dissertation, the following contributions are accomplished:

• A provenance data model that is built on causality dependency of data and system entities

and enables the capture and usage of provenance data from potential system transaction

events.

• A framework of provenance-based access control models, PBACB and PBACC , which

provide a foundation for utilizing provenance data for enhanced and finer-grained access

control in single, distributed, and cloud systems.

– The base PBAC Model (PBACB) is an access control model which bases the autho-

rization decision on provenance data. In order to effectively utilize provenance in-

formation, the PBACB model makes use of a specific provenance data model which

captures provenance data in directed-acyclic graph format. This format allows effective

ways to extract information through graph traversal queries.

– The extended model PBACC can capture and utilize contextual information associated
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with the primary entities of system events as attributes and store these as additional

provenance data.

• A framework of architecture variations that allows the incorporation of PBAC mechanisms

in a multi-tenant cloud Infrastructure-as-a-Service system such as OpenStack. Essentially,

this dissertation identifies a variety of deployment architecture to incorporate provenance-

aware as well as PBAC-enabled features into existing cloud environments and discuss the

strengths and weaknesses of each variation.

• Proof-of-concept prototypes that incorporate and extend industry standards such as XACML

implementation in a single system as well as OpenStack service components including Nova

(which is responsible for computing tasks such as allocation and scheduling of virtual re-

sources) and Glance (which is responsible for management of virtual machine images).

1.5 Organization of the Dissertation

Chapter 2 reviews background and related works. Chapter 3 introduces the provenance data model

that serves as the foundation of subsequent provenance-based access control models. In Chapter

4, a framework of provenance-based access control models is provided in detail with the imple-

mentation and evaluation of a proof-of-concept prototype in a XACML-aware system. Chap-

ter 5 describes and discusses the different architecture variations for adopting PBAC in a cloud

Infrastructure-as-a-Service environment with the implementation and evaluation of a proof-of-

concept prototype in an OpenStack cloud system. Chapter 6 discusses provenance sharing ap-

proaches for PBAC deployment in a distributed, multi-organization system in the context of a

group-centric collaboration environment. Chapter 7 provides discussion of future works and con-

cludes this dissertation.
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Chapter 2: BACKGROUND AND RELATED WORK

Acknowledgment: The materials in this chapter are published in [62, 63, 67].

This chapter provides background on the concepts and tools which this dissertation utilizes and

builds on. In addition, the chapter also summarizes related work in the existing literature.

2.1 Overview of Traditional and Existing Access Control Models

Access control has always played a vital role in the security of a computing system. Earliest

access control approaches consist of discretionary access control (DAC) [78] and mandatory access

control (MAC) [76]. DAC enforces the control over resources within a system as per resources’

owners. Essentially, the owner is responsible for specifying in which manner a particular resource

is accessible to specific system users. MAC enforces the control over resources in a partial-ordered

lattice of labels and clearances assigned to users and resources. The access is specified through

read and writes rules according to the relations between these labels and clearances. Over time,

systems have adapted to new demands and evolved. As a result, access control mechanisms have

also been required to follow suit.

Role-based access control [35, 79] (RBAC) has been a popular authorization solution in enter-

prise software and systems. The use of role constructs facilitates permissions and users manage-

ment. At the same time, RBAC can suffer from the issue of roles explosion. Attempts to enhance

RBAC features have driven the development of newer access control models [45, 74, 75, 89, 90].

In recent years, attribute-based access control [4, 44, 46–48] has gained momentum and recog-

nition in the academic and industrial community. In this model, access control decisions are made

based on the values of the attributes associated with particular users, resources and other entities

of interest within a system. Other works [13–15, 24, 85–88] focus on designing and deploying

ABAC in multi-tenant clouds as well as placing various forms of constraints in the model. To a

certain extent, provenance-based access control can also be considered a subset of ABAC. How-

ever, current ABAC models do not support provenance data and the associated complexity and
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unique characteristics that provenance data enables.

Apart from the above mainstream approaches on access control, other variations of access

control mechanisms exist within the literature. Notably, the following access control mechanisms

are related to the research in this dissertation.

History-based Access Control (HBAC) models provide access control to data objects based on

the action and request history of the subjects [9, 11, 34]. In HBAC policies, a subject’s request

is decided based on what actions and action-requests the subject had performed before. In this

context, the main motivation is to differentiate the “goodness” of subjects based on their past be-

haviors. Such information can be retrieved from provenance data. More specifically, it is captured

in transactions data in the model. In contrast, PBAC emphasizes the history of data objects, which

creates dependency chains, and utilizes the intrinsic dependencies, which can also be extracted

from transactions data, between these objects for access control purposes.

Relationship-based Access Control (ReBAC) for online social graphs can also be built on

path patterns of relation edges. Specifically, Cheng et al [29] specify policies that utilizes reg-

ular expression-based path patterns of relationship types between graph entities such as users and

resources for finer-grained and more expressive access control on online social networks. This

dissertation utilizes regular expression-based path patterns to capture the causality dependency

relations between graph entities instead of user-to-user, user-to-resource, or resource-to-resource

relationships [30, 31, 70, 71].

Usage control [68, 69] (UCON) is another approach that can greatly benefit from provenance

information. In essence, having the knowledge of all influencing activities by any involved party

on a particular resource can provide additional utility in pre-, ongoing-, and post- obligations and

authorizations models. Other works [49, 50] that focus on usage control of data dissemination in

a distributed-systems environment can also benefit from the information provided by provenance

data.
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2.2 Dynamic Separation of Duties Variations

As mentioned earlier, the use of provenance data in access control brings about the achievement of

previously unexplored features including new variants of dynamic separation of duties (DSOD),

which is an essential feature of access control. This section provides a summary of existing DSOD

works in the literature.

Separation of Duties (SOD) has long been studied and accepted as a fundamental approach

to prevent fraud and privileges misuse and abuse. Two major variations of SOD, Static SOD

(SSOD) and Dynamic SOD (DSOD), have been mainly discussed in the context of Role-based

Access Control [79]. Both SSOD and DSOD have demonstrated usefulness and effectiveness in

that domain, as evident by the extensive literature.

SSOD has a major limitation as it mainly deals with role assignment and thereby cannot address

issues that arise within a dynamic active session. The original concept of DSOD addresses this lim-

itation. Yet, this approach is also limited in its narrow role-centric scope as it is solely concerned

with role activation. For expansion, researchers have proposed variations of DSOD, each of which

addresses a separate issue. The variations include Object-based (ObjDSOD), Operational (OpsD-

SOD), and to a broader extent, History-based DSOD (HDSOD) [38,83]. These approaches rely on

the history information of system events, which is assumed to be readily available. However, there

lacks exact specifications on how such information can be captured and utilized. Provenance data

naturally provides such information and its unique characteristics enable even more sophisticated

DSOD features that have not been recognized so far in the literature. Therefore, this dissertation

proposes a DSOD approach that utilizes provenance information. The expressive power of prove-

nance utilization can further enable finer-grained DSOD policies and address other DSOD-related

issues such as object-based conflicts and work flows.

Table 2.1 shows several classic DSOD variations that are identified in the literature [38,73,83]

and some of their distinguishing characteristics. So far most of the published research on DSOD,

and more generally SOD, has been in conjunction with RBAC. In particular, SOD is developed
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around the main concept of dividing a business task into smaller sub-tasks or other identifiable

units such as actions, each of which is assigned to individual roles. These roles are classified into

conflicting role sets from which policies can be specified and enforced to achieve SOD.

Table 2.1: DSOD Variations and Features
Simple DSOD ObjDSOD OpsDSOD HDSOD TCE

Per Role X X X X X
Per Action X X X X
Per Object X X X
Task-aware X X X
Order-aware X X

Weighted Action-aware X

A definition of simple DSOD is given in [83]. Informally, the concept can be described as

follows. Given a set of conflicting roles in a RBAC system, no single user can activate two or

more roles from this set at the same time. For example, in the homework grading scenario, no user

should be able to activate the roles Student and Reviewer at the same time. This notion of DSOD

is limited in that it cannot support per-action control and therefore different variations have been

introduced [83].

One variation of DSOD is Object-based DSOD (ObjDSOD) [83]. Informally, the concept can

be described as follows. Given a set of conflicting roles and a set of conflicting actions allowed in

the conflicting roles, while a user may have conflicting roles activated at a given time, a user is not

allowed to perform an action allowed in a role on an object if she performed a conflicting action

allowed in conflicting roles on the same object. Here, the focus is on a singular data object upon

which conflicting actions are considered. For example, a user should not be allowed to review the

homework object that user submitted earlier while the user is allowed to review other homework.

Operational DSOD (OpsDSOD) [83] is another approach that can be described as follows.

Given a set of conflicting roles and a set of actions allowed in the conflicting roles, while a user

may be assigned to the conflicting roles, the user is not allowed to perform all the actions allowed

by the conflicting roles if the union of the actions can complete a particular task. For example,

suppose students in a business course are required to participate in an online role-playing project
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and provide inputs as different roles such as CEO and CTO to finish a given task. While students

can acts as multiple roles in the project, one student cannot perform all the actions of roles where

the roles are necessary to finish the required task.

History-based DSOD (HDSOD) [83] is defined as the combination of ObjDSOD and OpDSOD

to allow finer control that can be both object and task aware. More specifically, while operational

DSOD prohibits users performing a set of action types that can finish a particular task, it is object-

unaware and does not distinguish certain actions that are performed in a task for different objects.

History-based DSOD resolves this issue by combining object-based DSOD and operational DSOD.

In other words, it limits users from performing certain actions for a task, say T1, if the actions are

identified as necessary for another task T2 and the user performed other actions which together

with the attempted actions can complete the task T2. This issue is resolved in history-based DSOD

by allowing object-based control. One added characteristic of history-based DSOD is the con-

sideration of order-dependent sub-task sequences for identifying SOD conflicts. Order-dependent

conflicts arise when the sub-tasks are allowed or obliged to occur in a certain order. For example,

homework should always be submitted before it can be reviewed.

Transaction Control Expression (TCE) [73] is another traditional approach toward DSOD is-

sues which possesses its own interesting features. TCE is flexible in that it can cover a wide range

of DSOD features exhibited by other DSOD variations. At the same time, it also assumes a readily

available system-maintained history to rely on for access decisions. TCE also introduces the no-

tion of weighted sub-tasks. From this point of view, each sub-task is assigned an integer value as a

weight. The conflict is then determined by whether the total weight of actions exceeds a particular

weight threshold. An example of this can be seen in how peer-review processes are introduced

in the Homework Grading System (HWGS). A fellow student can review another student’s home-

work, whereas each review process can be assigned a weight 1. Homework can also be reviewed

by designated graders, each of whose reviews can be assigned a weight 2. A TA can only grade a

reviewed homework if the combined weight of all review processes exceeds 3, which can happen

by various combinations of student and grader reviews.
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Figure 2.1: OPM Causality Dependencies ( c©2011 IEEE [67])

2.3 Open Provenance Model

Large numbers of data models exist for capturing and representing provenance data. As each

particular data model is designed for a specific application domain in mind, there exists a gap

in the characteristics of each data model associated with each different domain. It becomes a

necessity for the development of a general provenance data model that can capture the different

characteristics belonging to the different domains and provide a common ground to be shared

among them [25–28].

Recently, the Open Provenance Model (OPM) [57] core specification v1.1 has been proposed

by a group of researchers based on various requirements associated with the usage and employ-

ment of provenance in various application domains that were identified in a series of information

provenance challenges. The OPM provides a technology-agnostic definition of provenance.

The main concern of OPM is to represent the execution process that led to a particular state

of a data object. In essence, OPM aims to capture the causality dependencies of the computing

operations, data objects, and execution context between any two object states. In the OPM graph-

ical representation, there are three main types of nodes: artifact which represents a state of a data

object, process which represents an operation, and agent which represents an execution context.

The direct causality dependency relationships between any pair of these nodes are captured by five

different types of edges: used(Role), wasGeneratedBy(Role), wasControlledBy(Role), wasTrig-

geredBy, and wasDerivedFrom, which altogether form a directed acyclic graph.
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Figure 2.1 illustrates how the above nodes and edges interact in a generic use case. The three

types of nodes are distinguished by different graphical representations: artifacts are represented by

ellipses, processes by rectangles, and agents by hexagons. The used(Role), wasGeneratedBy(Role)

and wasControlledBy(Role) edges are used to express the system-captured relationships between

the nodes. They are represented by solid lines, differentiated by the annotations on the edges.

Roles are used to give additional semantics to the associated edges. The wasTriggeredBy, and was-

DerivedFrom edges are represented by dashed lines. They are used to provide additional dataflow-

oriented and process-oriented views of the provenance data. They may not be fully captured by the

system and may require the user’s manual declaration in such cases. Figure 2.1 can be described

as follows. The agent Ag controlled the process p1 which used the artifact a1 to generate the new

artifact a2 which was then used by the process p2. Notice the direction of the arrows specifies a

causality relationship instead of a data flow. The source of the arc represents the effect while the

destination represents the cause. Also, although p1 used a1 and generated a2, it is not guaranteed

that a2 was derived from a1 and therefore that needs to be asserted with the wasDerivedFrom edge

from a2 to a1. The wasTriggeredBy edge in Figure 2.1 shows the dependency of processes. This

dissertation does not utilize this last type of edge in the model.

To distinguish nodes of the same type that are captured within the same graph, OPM assigns

each of the nodes a unique identifier. For example, two instances of a process that perform the

same operation are differentiated by their unique identities. The usage of assigned identities is also

applied to other components of OPM where distinguish-ability is required under the same context.

OPM is also capable of describing multiple views of the same process at different levels of

abstraction within the same graph. A specific abstraction view and its associated semantics are

captured in an abstract form of a series of operations which are called “accounts” in OPM. The use

of accounts to provide all ranges of description between abstract and detailed levels gives the users

efficient utilization of provenance data.

To capture the unique semantics of the operations within a particular application domain, OPM

allows more detailed descriptions to be associated with the nodes and edges in the provenance
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Figure 2.2: Prov-DM Model Components

graph. This is enabled through the annotation framework. The framework allows subtypes of

edges to be defined and properties of nodes to be annotated. These subtypes of edges or node

dependencies are defined in an OPM profile for a specific application domain.

In any active system, transactions occur and involve subjects, objects, and the corresponding

actions describing the interaction between these. The log of all such transactions can be seen as

the basis of provenance information. However, without relevant semantics to be assigned to the

transactions log, only limited benefits can be gained. For transactions information to be consid-

ered useful provenance information, causality dependencies of transaction data should be utilized.

Without causality dependency as semantics foundation, it is hard to utilize transaction flows and as-

sociated information. The dissertation acknowledges this essential provenance property, for which

purpose there requires a suitable provenance model. The work builds on OPM since it provides a

foundation for the causality dependencies of provenance data.
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2.3.1 The Provenance Data Model (Prov-DM)

Figure 2.2 depicts a resulting model from more recent efforts of the community in realizing a gen-

eral provenance data model for computing systems. This model, Prov-DM, is built on the initial

foundations of OPM. In particular, the model utilizes additional types of causality dependencies to

be exhibited between the main model components of Entity, Activity, and Agent. These compo-

nents correspond directly to the OPM components of Artifact, Process, and Agent. The additional

causality dependencies include the direct causality dependency between Entity and Agent, wasAt-

tributedTo, and the indirect dependencies of actedOnBehalfOf between Agents. Other modifica-

tions include change to the semantics of OPM indirect dependencies: wasTriggeredBy is changed

to wasInformedBy, wasControlledBy is changed to wasAssociatedWith. Note that these modifica-

tions are provided to enrich the expressiveness of provenance causality dependencies in order to

capture more variety of application domains that can benefit from provenance-aware mechanisms.

For the purpose in access control approaches, these modifications are additional features that do

not directly influence the approach. Therefore, the provenance data model is built on the simpler

OPM which provides sufficient features to enable the approach.

2.4 Standards and Tools

This section provides some background on the standards and associated tools on which the ex-

tended PBAC features are implemented.

2.4.1 Resource Description Framework

The Resource Description Framework (RDF) [51] is a framework for expressing information about

resources which can be physical, digital or abstract.

17



Figure 2.3: RDF Model Components

Overview

RDF lays a common foundation for applications to exchange information on the web for processing

without loss of meaning. This can result in broader availability of the information for utility in

applications other than those the information is originally intended for. Essentially, RDF provides

links between the resources. This allows the users to follow the links and aggregate data about

these resources. This capability of RDF allows its utility in different communities of practice.

Examples include making information available to different Web pages in such a way that search

engines can display the information in enhanced format or third-party applications can perform

automatic processes. Another example involves the construction of distributed social networks

through the interlinks of RDF descriptions across multiple Web sites. Additional practical uses of

RDF can be found in various other domains. This dissertation utilizes the framework to capture

provenance data for storage and query capabilities.

RDF Data Model

Essentially, the RDF framework achieves information linkage through utilizing a graph-based data

model that captures the relations in the forms of triples. A RDF statement is specified as a triple

of (subject, predicate, object) elements to express the relationship between any two resources.

Here, the subject and object elements represent the resources and the predicate element represents

the essence of the relationship, which is directional from the subject to the object. A graphical

illustration of a RDF statement is shown in Fig 2.3. Subjects and objects are depicted as nodes

and predicates as edges. A RDF graph is essentially a set of these statements describing the links

and relationship between resources. In an RDF graphs, three kinds of nodes exist as literals, IRIs

(Internationalized Resource Identifier), or blank nodes. IRI provides a unique identity as reference
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Figure 2.4: A RDF Example

to a particular resource. Literals are used for values such as strings and numbers. Blank nodes are

used to express more complex types of nodes. Figure 2.4 illustrates the concept with an example.

Essentially, the RDF graph describes some information about Alice who is a student who attends

the UTSA University in Texas and submits a homework document. The graph can be captured and

stored as the following RDF statements:

<Alice><hasRole><Student>

<Alice><submits><homework>

<Alice><attends><opm:agent>

<blankNode><name><UTSA>

<blankNode><state><Texas>

As RDF captures resources and their relationships in the form of triples, it naturally suits prove-

nance data which often forms directed-acyclic graphs. Utilizing RDF allows the capture of links
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between data objects and their lineage. For example, an OPM statement can be naturally be cap-

tured as a RDF statement where OPM nodes (processes, agents, and resources) can be represented

by subjects or objects, and causality dependency edges can be represented by predicates.

Specifically, the five basic causal edges between three node types of artifact, process and agent,

as identified in OPM, can be expressed in RDF representation as follows:

<opm:process><opm:used><opm:artifact>

<opm:artifact><opm:wasGeneratedBy><opm:process>

<opm:process><opm:wasControlledBy><opm:agent>

<opm:process><opm:wasTriggeredBy><opm:process>

<opm:artifact><opm:wasDerivedFrom><opm:artifact>

OPM graphs can then be captured as RDF graphs and stored in databases.

SPARQL Query Language

Information of RDF graphs can be extracted through graph traversal queries. Specifically, the

SPARQL query language is designed for that exact purpose. This subsection illustrates a simple

SPARQL query on the RDF example given in Figure 2.4.

Suppose the following query is made to ask for the university Alice attends:

SELECT ?u

WHERE {

{ Alice attends ?x .}

{ ?x name ?u . }
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}

The path pattern on the graph matches the RDF statements and returns “UTSA” as the result.

RDF and SPARQL Tools

RDF is also an industry-compliant standard and has many extant implementations. This disserta-

tion utilizes the open-source tool, Apache Jena, to implement a Java prototype that captures the

provenance data of a homework grading system simulation. Additionally, another Python-based

tool, RDFLib [7], is used to capture the provenance data of OpenStack components, specifically

Nova and Glance. The provenance data allows further implementation and evaluation of PBAC

uses in the single and multi-tenant cloud systems, implemented with Jena [21] and RDFLib re-

spectively. The Jena tool has a library (ARQ) that can enable SPARQL query capabilities. RDFLib

also implements SPARQL query capabilities.

2.4.2 Extensible Access Control Markup Language

The Extensible Access Control Markup Language (XACML) is an OASIS standard that serves as

a general-purpose policy language for access control.

Overview

The XACML framework essentially provides an infrastructure which consists of a language for

request/response templates that accompany a policy template that indicates the access control rules

used for decision evaluation. In addition, the framework also includes an architecture that specifies

all the necessary components that enable the infrastructure as well as enhanced features of access

control mechanisms.

The XACML framework is popular as a result of several characteristics. First of all, as a stan-

dard language, it is supported by a large community of experts and users whose efforts facilitate

the utilization and deployment of XACML in a system and increase the interoperability with other

applications using the same language. The language is also generic as it can be used in any en-
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vironment and not restricted by specific kind of resource or underlying system, allowing easier

policy management across different applications. Furthermore, policies can be distributed across

different systems but different users can still appropriately manage sub-components of the poli-

cies, allowing the aggregation of these different policies in the final decision. Last but not least,

XACML is powerful in the sense that it allows and facilitates extension to the base language to

accommodate specific use cases, and as a result increase the usability of XACML.

These characteristics are considered when taking an approach to extend the XACML with

PBAC capabilities.

XACML Policy Language

The XACML policy language essentially comprises policy targets and policy rules. The policy

targets include subjects, actions, and resources. The policy rules, which are used for access de-

cisions, consist of conditions and potentially obligations. It is possible to express the informal

policies for PBAC mechanism with the XACML policy language. Listings A.1 and A.2 display

sample templates for XACML requests and responses. Listing A.3 displays a sample template

for XACML policies. In essence, the XACML engine matches a particular request to appropriate

policies based on certain matching parameters including subjects, actions, and objects. The exact

matching parameters are specified in the policy rules, and are performed based on the unique IDs

provided in the XACML request and policy matching parts.

XACML Architecture

As depicted in Figure 2.5, the main components of the XACML architecture include the Policy

Enforcement Point (PEP), Policy Decision Point (PDP), Policy Administration Point (PAP), and

Policy Information Point (PIP). The PEP is responsible for receiving and enforcing access requests

from a front end interface. The PDP receives the transferred request from the PEP and is responsi-

ble for evaluating the request. It does so by obtaining the appropriate policy sets and rules from the

PAP. It also obtains relevant additional information from the PIP, which is responsible for looking
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Figure 2.5: A Standard XACML Architecture
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up information involving the subjects, objects and the system environment. After the PDP receives

the required information, it evaluates the request based on the information and policy rules. The

result is then used to form a response with a “yes” or “no” message. All the communication steps

are enabled in the background with the Context Handler component. Obligations, which indicate

the required actions for granting an access, also play important roles but the concept is outside the

scope of this work and henceforth not considered.

2.5 Overview of OpenStack Architecture

In recent years, the popularity of the open-source OpenStack project [5] has risen and elevated its

status as being in the same rank with mainstream cloud management platforms such as Amazon

Web Services [1], Google Compute Engine [2], and Microsoft Azure Infrastructure Services [3],

to name a few. The growth of the OpenStack cloud management platform is further boosted with

large interest and intensive investment from various organizations in both academic and indus-

trial sectors. This section provides an overview of the OpenStack architecture and several of its

components.

Cloud computing consists of three primary service models: Software-as-a-Service, Platform-

as-a-Service, and Infrastructure-as-a-Service (IaaS). Each of the service model type provides dif-

ferent types of resources that can be shared and used by consumers. The OpenStack platform

provides IaaS model, which mainly deals with virtual resources that include virtual networks, vir-

tual machine images and instances. Other OpenStack components also provide other service types

that relate to the mentioned virtual resources, i.e. monitoring resources usage and graphical user

interface.

As depicted on OpenStack website, the logical architecture includes the following compo-

nents:1

• Horizon: provides graphical user interface to users for accessing and using the other Open-

Stack service components.
1http://docs.openstack.org/admin-guide-cloud/content/conceptual-architecture.html
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• Nova: provides an API for controlling cloud computing resources and managing the con-

sumers of those resources.

• Glance: provides an API for management of virtual machine images.

• Swift: provides an API for object storage of virtual resources.

• Heat: provides an API for cloud applications orchestration.

• Cinder: provides an API for block storage of virtual resources.

• Neutron: provides an API for defining network connectivity in the cloud.

• Keystone: provides an API for maintenance of users’ information and identity for authenti-

cation purposes.

• Ceilometer: provides an API for monitoring and collecting information on the movements

and usages of virtual resources.

In this dissertation, the focus is on enabling PBAC-enabled authorization service for virtual

resources including virtual machine images and instances. Specifically, the emphasis is placed on

logical architecture of the Nova and Glance service components over the other described compo-

nents.2

2http://docs.openstack.org/admin-guide-cloud/content/logical-architecture.html
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Chapter 3: FOUNDATION OF ACCESS CONTROL IN

PROVENANCE-AWARE SYSTEMS

Acknowledgement: The materials in this chapter are published in [61, 67].

This chapter discusses the essential characteristics of provenance data in computing systems.

From there, it describes a base provenance data model, built on the OPM described in the previous

chapter, which allows the utilization of provenance information for enhancement of access con-

trol goals. More specifically, the base provenance data model captures the causality dependency

relations of provenance information in a way that allows unique constructs to be formed and used

as control unit for access control purposes. The chapter demonstrates the use of the model in

capturing provenance data of a sample scenario.

3.1 Characteristics of Provenance Data

In recent years, researchers have studied data provenance issues extensively in various computing

and application environments. Generally speaking, many of these studies emphasize that data

provenance can provide pedigree, usage tracking, versioning capability, et cetera. While this could

be true in theory, in a real world system, some of these utilities can be more critical than others.

Fundamentally, the utilities of provenance largely depend on the kinds of provenance data that are

captured in a system. Capturing complete provenance data for all the operations occurred in a

system is neither feasible nor necessary.

In a provenance system, while many computing operations and data dependencies can be cap-

tured by the system, there are certain data object (or node) dependencies that can be captured

properly only by users’ manual declaration. For example, if a user creates a new document from

two existing documents, only the user herself can tell whether the newly created document is de-

rived from any or all of the existing documents or not. While this could be done automatically by

a system to a certain degree, for example, by comparing contents of these documents, there is no
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guarantee for the accuracy of the result since ultimately it is the intention of the user that defines

the dependency.

In addition, even with users’ manual input, capturing a complete list of provenance data or data

dependency is not likely to be possible in a system. This is largely because human memory is not

capable of identifying all the source information of their ideas or creations. Consider an example

where a researcher writes a scientific article with a list of citations. While the author may try as

hard as possible to identify all the sources from where the ideas are derived, some ideas could be

simply based on years of study and experience. Hence it is not likely to be possible to generate a

complete list of data dependencies.

At the same time, capturing some information of the activities that occurred in a system may

not provide any additional utility of provenance. For example, attribute update operations could

be critical for authorization process, but capturing these operations in provenance data may not

provide any additional utility. Also, it is not necessary to capture provenance data of all activities

if they do not contribute in achieving particular goals of a provenance system. Depending on the

goals of a provenance system, some activities are not necessary to be considered in the provenance

system.

Having these constraints, it is necessary identify the kinds of operations that can be and need

to be captured as provenance data, how the captured provenance data can be used in a provenance

system and what utilities of provenance can be achieved with the given provenance data. To prop-

erly discuss these issues, there requires a specific computing application environment where a set

of operations can be specified and expressed and some reasonably significant utilities of the prove-

nance data can be identified. This dissertation emphasizes on the utilization of provenance data for

access control purposes in computing systems.

3.2 Base Provenance Data Model

As described and commonly well recognized within the research community, provenance data by

its inherent characteristic forms a directed-acyclic graph (DAG). Thanks to this strong property,
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provenance data is well suited for capturing and storing information in such a way that traversal-

capable queries can be executed to extract useful information in an efficient and convenient manner.

Additionally, the DAG structure also enables unique and useful information to be captured and

stored. Different types and shapes of sub-graphs can convey specific information that is not usually

captured with regular data.

As a result of this specific nature of provenance data, numerous different data models are de-

signed and proposed to suit specific tasks regarding provenance data. Although each of the differ-

ent variations is capable of catering to the specific need of each domain, the community recognized

the necessity for a unified and general data model for provenance. Research community’s efforts

resulted in the formation of the Open Provenance Model (OPM), and subsequently its successor,

the Prov-DM (as described in 2.3.1). Both of these models identify a set of main entities exhib-

ited by provenance data, and additionally, the relationship between any pair of such entities that

establishes a causality dependency relation. Such modeling facilitates the capture and extraction

of provenance data.

OPM is designed with the purpose to capture the provenance information of any possible re-

source, either physical or digital, in any given context or application domain. As such, OPM is

not specifically designed to capture provenance data in computing systems in a way that allows

access control goals to be realized. This section describes a base data model for provenance data

that is built upon the concepts of causality dependency relations exhibited by the OPM, which was

reviewed in Chapter 2. The model is used to capture provenance data from specific system events

and provides a foundation on which it becomes possible to enable, enhance, and enrich access

control mechanisms.

3.2.1 Model Components

In a provenance-aware system, it is assumed that all user transactions can be captured by the

mechanisms available within the capabilities of the underlying system. Without loss of generality,

it is assumed that the capture of a user transaction can be simplified to a construct of the form
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Figure 3.1: A Base Provenance Data Model

(Subject, Action, InputObject, OutputObject). Depend on the use cases, either InputObject or

OutputObject can be optional (but not both). Note that transaction data is different from a request

in that transaction data knows exactly what objects are used and generated, while a request does

not include any objects that are generated from the performed request.

The base provenance data (PDB) stores user transactions data that are captured as a result

of performed actions and form a directed graph. Each transaction is stored as a set of triples that

consists of two entities and one causality dependency.

The main entities to be captured from system events are classified into three types, each of

which is represented as a vertex or node on the graph, and depicted with different geometric shapes:

• Subjects correspond to OPM agents and are graphically depicted by hexagons.

• Actions correspond to OPM processes and are graphically depicted by rectangles.

• Objects correspond to OPM artifacts are graphically depicted by ellipses.

The causality dependency relations between several pairs of node entities are captured by edges of

three main types:

• wasGeneratedBy captures the relation between an Object entity and an Action entity. This

relation specifies the object as an output of the action.
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• wasControlledBy captures the relation between an Action and a Subject. This relation spec-

ifies the subject as performing the action.

• used captures the relation between an Action and an Object. This relation specifies the action

uses the object as an input.

The causality dependency utilizes three basic dependency types of ‘wasControlledBy’, ‘was-

GeneratedBy’ and ‘used’ out of five causality dependencies identified in OPM [57]. The remaining

two dependencies are not used in the base provenance data since they are indirect dependencies

that either can be system-computed from the direct dependencies or are user-declared. In the

context of a specific use case scenario, each type of causality dependency can carry different se-

mantics. OPM allows a notion of role for distinguishing these semantics of three base depen-

dencies. The model identifies this notion as “subtypes” instead of “roles” and utilizes them for

only ‘wasGeneratedBy’ and ‘used’ dependencies to specify how objects are generated or used.

The model does not allow “subtypes” for ‘wasControlledBy’ since it is assumed that there is

only one acting user per action instance. For example, suppose a user u1 appended object o1

to object o2. The transaction data contains < u1, append1, (o1, o2), o1v2 > and corresponding

provenance data contains< append1, u1, wasControlledBy >,< append1, o1, used(source) >,

< append1, o2, used(ref) > and < o1v2, append1,wasGeneratedBy(append) >. Here, o1 and

o2 are input objects, o1v2 is the output object and source, ref, append are subtypes.

The identification of subtypes enriches the ways the behavior of system entities can be ex-

pressed. Specifically, different path patterns of dependency edges (or dependency path patterns)

(DPATH) can be used to capture such behavior which represent the provenance information of

the entities. In addition, it is also possible to capture relationships that arise naturally from the

causality dependency of provenance data captured in different application domains. For example,

from a particular object, a path pattern which states which action the object “was generated from”

and which subject the process “was controlled by” can provide the information on the user’s rela-

tion with that object. The expressiveness of dependency path patterns can be further enriched with
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the use of regular expressions. For example, the following regular expression-based dependency

path pattern wasGeneratedBy(replace) + .wasControlledBy specifies a dependency path pat-

tern which matches any path that starts from an object being “replaced” one or more times and

ends at all subjects that performed the “replace” action instances. In access control aspect, the

knowledge of this behavior and relationship information can be of beneficial use.

The base provenance data model provides efficient usages of provenance data and also supply

essential tools in laying a foundation for access control in provenance-aware systems [61]. The

general foundation for access control based upon provenance data via semantic constructs called

abstracted dependency names (DN ) for dependency path patterns. Essentially, these constructs

provide abstractions over semantic relationships between multiple data objects. These meaning-

ful dependency name constructs can be used as effective control units for access control policy

specification and enforcement.

Dependency lists (DL) are constructed as pairs of abstracted dependency names and corre-

sponding expressions of dependency path patterns. Each dn ∈ DN is paired with, and defined by,

exactly one dpath ∈ DPATH , where dpath may use other previously defined dn’s. Recursive or

cyclic definitions are not permitted so each dpath can be reduced to a regular expression using only

base dependency types by expanding the dn definitions inline. There can be object dependency

lists and acting user dependency lists. Object dependency lists include dependencies between ob-

jects and other entities in provenance data such as other objects, acting users (agents in OPM), or

action instances. Likewise acting user dependency lists include dependencies of acting users. The

proposed model considers only object dependency lists as object dependency is an essential notion

of the base provenance-based access control model.

3.2.2 Model Specifications

1. S,A,AT,O and OR are subjects, action instances, action types, objects, and object roles

respectively.

2. G,U,G−1 and U−1 are sets of role-specific variations of ‘wasGeneratedBy’ and ‘used’ de-
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pendencies and matching sets of inverse dependencies, respectively.

3. {‘c’, ‘c−1’} is the set of ‘wasControlledBy’ dependency and its inverse dependency.

4. Base provenance data PDB forms a directed graph and is formally denoted as a triple <

VB, EB, DB >:

• VB = S ∪A∪O, is a finite set of subjects, action instances, and objects that have been

involved in transactions in the system and are represented as vertices;

• DB = {‘c’} ∪ U ∪G ∪ {‘c−1’} ∪ U−1 ∪G−1, is a finite set of base dependency types;

• EB ⊆ {(A × S × ‘c’) ∪ (A × O × U) ∪ (O × A × G) ∪ (S × A × ‘c−1’) ∪ (O ×

A × U−1) ∪ (A × O × G−1)}, denoting dependency edges, is the set of existing base

dependencies in the provenance data.

5. DNO, disjoint from DB, is a finite set of abstracted names for dependencies of objects.

6. Let Σ be an alphabet of terms in DB ∪ DNO. The set DPATH of regular expressions is

inductively defined as follows:

• ∀p ∈ Σ, p ∈ DPATH; ε ∈ DPATH;

• (P1|P2), (P1.P2), P1∗, P1+, P1? ∈ DPATH , where P1 ∈ DPATH and P2 ∈ DPATH .

7. DPATHB ⊆ DPATH , is the set of regular expression using only alphabet of terms in DB.

8. DLO : DNO → DPATH , defines each dn ∈ DNO as a path expression. DLO is also

viewed as a list of pairs of object dependency names and corresponding dependency paths.

9. λO : DNO → DPATHB, maps each dn ∈ DNO to a path expression using only base

dependency types db ∈ DB by repeatedly expanding the definitions of any dni ∈ DNO that

occurs in DLO(dn).

32



Discussion

Unlike OPM, the provenance data model makes use of all the matching inverse dependencies

of the dependencies that are captured as a result of transactions. Using normal dependencies,

provenance data can be traced only backward in time. The inverse dependencies are necessary

for traversing some dependency data since, for example, a request to modify an object may need

some verification whether its newer version had been viewed or not. This rule can be verified by

traversing the provenance data forward in time. It may also require changes in direction multiple

times in case, for example, one may want to check whether any of the related objects and object

versions was ever viewed or accessed by someone.

For the base data model, note that while acting user dependency information is available in

provenance data, it is not likely to be the main information that provenance data captures. In fact,

by definition, provenance is history of objects not acting users though it also includes user’s activity

histories. This restriction is relaxed in the extended provenance data model.

Note that only certain kinds of edges can exist (no O to O edge for example) and only certain

labels can be applied to certain kinds of edges (A to S edge must be labeled ‘c’ for example).

By definition each edge is accompanied by its inverse edge to facilitate traversal in forward and

backward direction. If the inverse edges are dropped the graph becomes acyclic as in the OPM

model.

3.2.3 Use Case Scenarios and Sample Usages

This subsection describes a homework grading scenario and the associated provenance data, as

graphically illustrated in Figure 3.2. It then describes the transaction events that occurred and the

corresponding provenance data that can be captured utilizing the base provenance data model.
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Figure 3.2: Sample Provenance Data for Online Grading System in OPM Graph Representation
( c©2012 IEEE [67])

A Homework Grading Scenario

Essentially, subject au1 represents a student who uploaded an initial homework object, replaced

the object with a newer version, and then submitted it. Subjects au2 and au3 represent other stu-

dents who reviewed the submitted homework object and generated review objects of the homework

object. The review object can then be revised, as performed by au2. Subject au5 represent a teach-

ing assistant who graded the homework object and then appended a revised review object to the

graded homework object.

Sample Transactions and equivalent Provenance Data:

The list below shows some sample transaction data and the matching base provenance data of the

above scenario.

1. (au1, upload1, o1v1): < upload1, au1, c >,< o1v1, upload1, gupload >
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2. (au1, replace1, o1v1, o1v2): < replace1, au1, c >,

< replace1, o1v1, uinput >,< o1v2, replace1, greplace >

3. (au1, submit1, o1v2, o1v3): < submit1, au1, c >,

< submit1, o1v2, uinput >,< o1v3, submit1, gsubmit >

4. (au2, review1, o1v3, o2v1): < review1, au2, c >,

< review1, o1v3, uinput >,< o2v1, review1, greview >

5. (au3, review2, o1v3, o3v1): < review2, au3, c >,

< review2, o1v3, uinput >,< o3v1, review2, greview >

6. (au2, revise1, o2v1, o2v2): < revise1, au2, c >,

< revise1, o2v1, uinput >,< o2v2, revise1, grevise >

7. (au5, grade1, o1v3, o4v1): < grade1, au5, c >,

< grade1, o1v3, uinput >,< o4v1, grade1, ggrade >

8. (au5, append1, o4v1, o2v2, o4v2): < append1, au5, c >,

< append1, o4v1, usrc >,< append1, o2v2, uref >,

< o4v2, append1, gappend >

Object Dependency List DLO:

It is possible to generate a dependency list of dependency name constructs and corresponding

dependency path patterns of the above causality dependency edges.

1. < wasReplacedV of, greplace.uinput >

2. < wasSubmittedV of, gsubmit.uinput >

3. < wasReviewedOof, greview.uinput >

4. < wasRevisedV of, grevise.uinput >
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5. < wasGradedOof, ggrade.uinput >

6. < wasAppendedV of, gappend.usrc >

7. < wasOneOfReviewOf,wasRevisedV of ∗ .greview.uinput >

8. < wasAuthoredBy, wasSubmittedV of?.wasReplacedV of ∗

.gupload.c >

9. < wasReviewedBy, wasReviewedOof−1.greview.c >

10. < wasCreatedReviewBy,wasRevisedV of ∗ .greview.c >

11. < wasGradedBy, wasAppendedV of ∗ .ggrade.c >

The dependency list items 1 - 6 define some dependency names and their dependency path

patterns using base dependencies. Items 7 - 11 define additional dependency names using both

base dependencies and previously defined dependency names. Based on this object dependency

list, it becomes possible to easily specify PBAC policies, as demonstrated in chapter 4.

3.3 Using Provenance for Access Control

The proposed provenance data model allows the identification dependency path patterns and the

use of associated dependency names in enabling richer access control mechanisms in provenance-

aware systems. More specifically, this approach can be utilized to pursue two directions: provenance-

based access control (PBAC) and provenance access control (PAC). In essence, PBAC focuses on

how provenance data can be used to control access to data, while PAC concerns how access to

provenance data should be controlled. Several features that can be enhanced through these ap-

proaches are shown in Figure 3.3.

PBAC and PAC are complementary to each other in that PBAC can be used to control access to

provenance data and PAC can be used to elevate trustworthiness of provenance data. Furthermore,

they both require mechanisms to capture, store and retrieve provenance data. Therefore, while
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Figure 3.3: Access Control Features of Dependency Path Patterns-based Approach

this dissertation focuses on a foundational model for PBAC, the proposed model also provides

a foundation for proper understanding of PAC since it identifies how provenance data should be

structured and retrieved.

This section proceeds to briefly describe several insights on the topic of PAC. For the remainder

of this dissertation, the main focus is on PBAC.

Insights

There has been considerable attention recently on securing provenance data [16, 17, 19, 20, 41, 42,

65,84] including access control approaches. Note that while PAC needs some other access controls

in play, such as RBAC and perhaps even PBAC can be used for PAC, this could be only a secondary

concern of PAC. The main concern of PAC includes unique issues that access to provenance data

presents.

In PAC, one of the most significant differences is that provenance data that users want to access

are likely to be captured by traversing the provenance graph using some meaningful dependency

paths. Furthermore, users may want to access the information that can be derived from the vertices

found as a result of the provenance graph traversal. In this respect, there need multi-layer access

control evaluations with different granularity.

At its core, PAC utilizes the dependency path patterns found in provenance data as a unit

for access request as well as a control unit used in policy specification. The initial and most
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essential control should be made through requiring access control to the dependency path patterns

themselves. More precisely, access control is done on the semantic named-abstractions of these

patterns that can be defined and assigned by system architects. Such assignments can be stored

and utilized as a control unit for an access control solution enforced by the system.

Once the dependency path pattern is allowed, a finer grained control is necessary to determine

how much of the resulting information (vertices) should be allowed. This requires vertex-level

or type of vertex-level access control policies. For example, a student is allowed to know some

revisers but not all or she is allowed to know department’s information where the revisers belong

but not individual revisers’ names. Graph redaction or sanitization processes can be performed on

provenance data to achieve this end [16, 20].

In addition, if the requester want to access information that are not available in provenance data

but can be derived from the resulting provenance information, how to control access to dependency

path patterns and how much of the resulting provenance data should be allowed for an access also

have to be considered in PAC. These issues are essential for PAC and necessary to be investigated

in depth. This work on PBAC can lay a foundation for further investigation on PAC.
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Chapter 4: PROVENANCE-BASED ACCESS CONTROL

Acknowledgment: The materials in this chapter are published in [63, 67].

Traditional access control mechanisms often provide access protection on data objects through

predefined constructs, e.g., roles in Role-based Access Control (RBAC) and clearances/classifica-

tions in Mandatory Access Control (MAC). PBAC aims to provide access control protection on

data objects by utilizing the foundational construct of dependency path patterns found in prove-

nance data as described in section 3. While PBAC can support various access control capabilities

that are beyond those available in traditional access controls, it should be recognized that in a

realistic system deployment, PBAC alone may not be sufficient. Combination with other access

control mechanism such as RBAC would bring out more capable access control capabilities. This

chapter elaborates on the PBACB and PBACC models which can enable many enhanced access

control features, as identified in Figure 3.3. The chapter also elaborates on an associated proof-of-

concept single-system deployed prototype, evaluate the prototype on the homework grading use

case scenario, and provide the insights on the experimental results.

4.1 Base PBAC(PBACB) Model

This section defines the base model and provides an access evaluation algorithm to show how ac-

cess control decision in the proposed model is made. Also, it introduces a policy specification

grammar that can support the base provenance-based access control (PBACB) model. Further-

more, the concepts can be demonstrated with a sample homework grading scenario as introduced

in section 3.

4.1.1 Model Components

The proposed provenance-based access control model consists of several core components. Figure

4.1 depicts these components. They are subjects, action instances, action types, objects, object

roles, provenance data, dependency lists, policies, and access evaluation function for user autho-

39



Figure 4.1: PBACB Model Components ( c©2012 IEEE [67])

rization and action validation. Subjects, action instances and types, objects, and provenance data

are components of the base provenance data model discussed in chapter 3. Further elaboration can

be made on these components in the context of access control.

Subjects (S): represent acting users and interact with the system through initiating access con-

trol requests and performing granted requesting actions. Acting users represent human beings who

initiate requests for actions against objects. However, provenance data captures acting subjects, not

acting users. Capturing subjects can further address DSOD concerns. In a RBAC system, subjects

correspond to sessions, where each session is initiated by an acting user activating a subset of his

assigned roles. To become role-aware, the model can make the distinction and utilize the notion of

subjects in place of acting users.

Action instances (A) are initiated by users through subjects for an access to objects. Provenance-

based policies are defined by using action types (AT ) rather than action instances. AT is a fixed

finite set of action types predefined by system architects. It is assumed that a system can derive

action types from given action instances.

Objects (O) are resource data that are accessed by subjects. The provenance-based access

control model supports object versioning and allows multiple versions of an object. Provenance

data captures object versions as vertices. When a transaction modifies an object version, the new
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version is represented as a new vertex in provenance data. If an object version is copied or modified

into a new object, the output is represented as a new object.

Provenance Data (PD) essentially comprises of transaction events that are captured as base

provenance data using the base provenance data model introduced in Chapter 3.

A Request consists of a subject, an action instance and a set of objects with object roles that are

to be accessed. Specific object roles for each action type are pre-defined in the system. In a request,

the action type of the action instance may require multiple objects with different object roles (OR)

assigned to them. For example, an append action type requires one reference object and one source

object to which the contents of the reference are appended. Object roles are necessary since objects

with different roles can, in general, need different rules for granting an action request. Once a

request is allowed and performed, the corresponding transaction data is captured and stored as part

of the base provenance data. Transaction data includes subject, action instance, input object(s) and

output object(s).

Policies include a set of rules that need to be evaluated for granting access. These rules are

either for user authorization or action validation. User authorization rules specify whether the

requester is qualified for the request or not while action validation rules specify whether the

requested action can be performed against the requested objects. Both types of rules are specified

using dependency names. There is only one policy per action type.

Access Evaluation function evaluates a request by utilizing user authorization rules and action

validation rules found in the policy for the type of the requested action and returns a Boolean value.

The algorithm for access evaluation is provided in Algorithm 4.1.

4.1.2 Policy Specifications

This subsection defines a policy specification grammar PG as shown in Table 4.1. The proposed

grammar is designed with simplification to sufficiently capture policies in the sample use case

that demonstrate some basic capabilities of the model. The grammar could be further extended

to support more sophisticated policies. Policies for the proposed model consist of a set of user
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Table 4.1: A Policy Specification Grammar PG
Policy ::= “allow” < Req > “⇒ ” < UARules > “ ∧ ” < AV Rules > |
“true”
Req ::= “(” < Subject > “, ” < ActType > “, ” < ObjRoles > “)”
ObjRoles ::= < ObjRole > | < ObjRole > “, ” < ObjRoles >
UARules ::= < UARule > |“(” < UARules > “)”|
< UARules >< Connect >< UARules >
AV Rules ::= < AV Rule > |“(” < AV Rules > “)”|
< AV Rules >< Connect >< AV Rules >
Connect ::= ∨|∧
UARule ::= < Subject >< oper1 >< PathRule >
AV Rule ::= “|” < PathRule > “|” < oper2 >< Number > |
< PathRule >< oper3 >< PathRule >
PathRule ::= “(” < ObjRole > “, ” < DName > “)”
oper1 ::= “ ∈ ”|“ /∈ ”
oper2 ::= “ = ”|“ 6= ”|“ ≥ ”|“ ≤ ”|“ < ”|“ > ”
oper3 ::= “ = ”|“ 6= ”|“ ⊆ ”
DName ::= dn1|dn2| . . . |dnn

Number ::= [0− 9]+
Subject ::= sub
ActType ::= at1|at2| . . . |atm
ObjRole ::= orole1 |orole2 | . . . |orolek

authorization rules (UARules) and action validation rules (AV Rules). The overall result of both

of these is combined by conjunction. Each rule is defined using path rules that consist of a starting

node and a dependency name to which a regular expression-based dependency path pattern is

mapped in a dependency list. (See the model definition section below.) A user authorization rule

is defined using an acting user, a path rule and an operator and checks (non-)existence of acting

user in the vertices found using the path rule, while an action validation rule is defined using

one or two of the path rules and an operator and either checks (non-)existence or frequency of

vertices in the path or compares two sets of vertices found in the two paths. These three types

of rules (one user authorization rule and two action validation rules) are by no means exhaustive

but are sufficient to capture the sample use case scenario presented in this dissertation. Each user

authorization rule is individually evaluated to a Boolean result. The individual results are then

combined using disjunction and conjunction as specified. Action validation rules are similarly

individually evaluated and then the results are combined using disjunction and conjunction as

specified.
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4.1.3 Access Evaluation Procedure

The Access Evaluation Procedure is specified in Algorithm 4.1. In the algorithm, line 2 - 6 shows

the rule collecting phase that identifies all the user authorization rules and action validation rules

from the policy applied to the action type of the request. The user authorization phase (line 7 -

14) and action validation phase (line 16 - 25) differ in that action validation may need to compute

multiple sets of vertices from multiple path rules while user authorization only evaluates one path

rule. The user authorization phase compares the acting user of the request to the vertices found as

a result of checking the path rules against the base provenance data (PDB) and returns a Boolean

value. An action validation rule evaluates the existence or number of vertices found by a path

rule or compares multiple sets of vertices found by multiple path rules, and then returns a Boolean

value. User authorization rules (as well as action validation rules) are connected using conjunctive

and disjunctive connectives. Once the truth values of these two phases are computed, the algorithm

evaluates the final truth value using conjunctive connective.

It is possible to provide a partial analysis for the complexity of this algorithm. It is trivial that

all steps outside the FOR loop from line 7 - 13 and the nested FOR loops from line 16 - 24 are in

PTIME. Since the number of rules and path rules are finite, all the extraction steps in the two FOR

loops except lines 11 and 21 are also in PTIME. Hence the complexity is dominated by lines 11 and

21. Lines 11 and 21 require a tracing algorithm on the provenance graph. In practice this tracing

algorithm would be embedded in queries that support regular expression-based path patterns. It

can be conjectured that the complexity in some subsets of practical problem space is achievable in

PTIME while in other cases may be NP-complete or worse.

As the current state-of-the-art data and query model for OPM graph is RDF [55] and SPARQL,

it is possible to associate SPARQL queries that support regular expression through property path

constructs with the tracing step in the algorithm. As an OPM graph is essentially a DAG, no paths

in the graph can create cycles. [54] shows that the complexity of regular path queries with no

cycles is PTIME. An assumption is made on the correctness of the tracing algorithm on which the
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Algorithm 4.1 AccessEvaluation(s, a, O)
1: (Rule Collecting Phase)
2: at← a’s action type
3: p← γ(at)
4: RULEUA ← user authorization rules UARule found in p
5: RULEAV ← action validation rules AV Rule found in p
6: (User Authorization Phase)
7: for all rules in RULEUA do
8: Extract the path rule (ObjRole,DName) from rules
9: Determine the object o ∈ O, whose role is ObjRole
10: Extract dependency path expression dpathb in DPATHB from DName using λO function
11: Determine vertices by tracing base provenance data PDB through the paths expressed in dpathb that start from the object o using δO

function
12: Determine the truth value by evaluating the result against the rule
13: UAuth← a combined truth value based on conjunctive or disjunctive connectives between rules
14: (Action Validation Phase)
15: for all rules in RULEAV do
16: Extract path rules (ObjRole,DName) from rules
17: for all path rules extracted do
18: Determine the object o ∈ O, whose role is ObjRole
19: Extract dependency path expression dpathb in DPATHB from DName using λO function
20: Determine vertices by tracing base provenance data PDB through the paths expressed in dpathb that start from the object o using δO

function
21: Determine the truth value by evaluating the results of all the extracted path rules
22: AV al← a combined result based on conjunctive or disjunctive connectives between rules
23: Evaluate a final truth value of UAuth and AV al using conjunctive connective

correctness of the access evaluation algorithm relies. In particular, it is assumed that all vertices

reachable by the query embedding regular path pattern are returned. The correctness of extracting

rules and path rules is ensured from the policy language construct. Correctness of the two FOR

loops can then be done with loop invariant.

4.1.4 Model Specifications

Based on the core components and formal specifications identified in Chapter 3, it is possible to

formally define a base model for PBAC as follows.

1. S,A,AT,O and OR are subjects, action instances, action types, objects, and object roles

respectively.

2. G,U,G−1 and U−1 are sets of role-specific variations of ‘wasGeneratedBy’ and ‘used’ de-

pendencies and matching sets of inverse dependencies, respectively.

3. {‘c’, ‘c−1’} is the set of ‘wasControlledBy’ dependency and its inverse dependency.
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4. Base provenance data PDB forms a directed graph and is formally denoted as a triple <

VB, EB, DB >:

• VB = S ∪ A ∪ O, a finite set of subjects, action instances, and objects that have been

involved in transactions in the system and are represented as vertices;

• DB = {‘c’} ∪ U ∪G ∪ {‘c−1’} ∪ U−1 ∪G−1, a finite set of base dependency types;

• EB ⊆ {(A × S × ‘c’) ∪ (A × O × U) ∪ (O × A × G) ∪ (S × A × ‘c−1’) ∪ (O ×

A × U−1) ∪ (A × O × G−1)}, denoting dependency edges, is the set of existing base

dependencies in the provenance data.

5. DNO, disjoint from DB, is a finite set of abstracted names for dependencies of objects.

6. Let Σ be an alphabet of terms in DB ∪ DNO. The set DPATH of regular expressions is

inductively defined as follows:

• ∀p ∈ Σ, p ∈ DPATH; ε ∈ DPATH;

• (P1|P2), (P1.P2), P1∗, P1+, P1? ∈ DPATH , where P1 ∈ DPATH and P2 ∈ DPATH .

7. DPATHB ⊆ DPATH , is the set of regular expression using only alphabet of terms in DB.

8. DLO : DNO → DPATH , defines each dn ∈ DNO as a path expression. DLO is also

viewed as a list of pairs of object dependency names and corresponding dependency paths.

9. λO : DNO → DPATHB, maps each dn ∈ DNO to a path expression using only base

dependency types db ∈ DB by repeatedly expanding the definitions of any dni ∈ DNO that

occurs in DLO(dn).

10. PE is a language specified in the policy expression grammar PG.

11. P ⊆ PE, is a finite set of policies.

12. γ : AT → P , a mapping of an action type to a policy.
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13. δO : O × DPATHB → 2VB , a function mapping an object and a base dependency path to

vertices in PDB such that o2 ∈ δ(o1, dpath) iff there exists a path in PDB from o1 to o2

whose edge labels form a string that satisfies the regular expression dpath.

Definitions 2-3 define base dependencies which are the building blocks of base provenance

data as defined in definition 4. In definition 4, these dependencies can be used only between cer-

tain kinds of vertices. For example, ‘c’ and ‘c−1’ can be used to connect an action instance to an

acting user and an acting user to an action instance, respectively. The simplicity and effectiveness

in policy specification and access control management are achieved with the utilization of depen-

dency names and matching dependency paths in dependency list (DLO) as shown in Definition

5-9. Definitions 10-12 provide the means for defining policies and attaching them to action types.

Definition 13 defines the δO function necessary for access request evaluation with respect to the

given PDB.

4.1.5 A Case Study

The case study on the homework grading system, as introduced in section 3, can be further ex-

tended with the following policies:

1. Anyone can upload a homework document.

2. A user can replace an old version of a homework document with a new version (versioning

control) if the user is the author of the old version and the old version has not been submitted.

3. An author can submit her homework (origin-based control) if it was not submitted already.

4. A user can review only a submitted homework (work-flow control) if she is neither the author

nor one of the existing reviewers of the homework (dynamic separation of duty) and the

homework has been reviewed less than 3 times and not been graded.

5. A review can be revised if the user created the review and the referred homework is not

graded yet.
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6. A homework document can be graded if it was reviewed at least 2 times.

7. A review can be appended into a grade if the acting user created the grade and the review

was made for the homework that the grade is made against.

In PBAC, policies are defined using dependency names. These dependency names are defined

in the dependency list and mapped to a combination of other dependency names and paths which

eventually can be expressed in regular expressions (DPATHB) that only utilizes base dependency

types (DB). It is possible to utilize the sample object dependency list, as introduced in section 3,

to construct policies for the sample case shown below:

Sample Policies:

1. allow(au, upload, o)⇒ true.

2. allow(au, replace, o)⇒ au ∈ (o, wasAuthoredBy) ∧

|(o, wasSubmittedV of)| = 0.

3. allow(au, submit, o)⇒ au ∈ (o, wasAuthoredBy) ∧

|(o, wasSubmittedV of)| = 0.

4. allow(au, review, o)⇒ au /∈ (o, wasAuthoredBy) ∧

au /∈ (o, wasReviewedBy) ∧

|(o, wasSubmittedV of)| 6= 0 ∧

|(o, wasReviewedOof−1)| < 3 ∧

|(o, wasGradedOof−1)| = 0.

5. allow(au, revise, o)⇒ au ∈ (o, wasCreatedReviewBy) ∧

|(o, wasOneOfReviewOf.wasGradedOof−1)| = 0.

6. allow(au, grade, o)⇒ ((|(o, wasReviewedOof−1)| ≥ 2 ∧

|(o, wasGradedOof−1)| = 0).
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7. allow(au, append, osrc, oref )⇒ au ∈ (osrc, wasGradedBy) ∧

(osrc, wasGradedOof) = (oref , wasOneOfReviewOf).

It is assumed users can access only the newest object versions in the system. If not, policies

like (2) in the sample need an additional rule to make sure the object or the newer versions of the

object have not been used for a submission.

Discussion

Although provenance-based access control utilizes provenance data to make access decision, it is

likely the case that a real world system also requires other forms of access control systems together

with PBAC. For example, consider a homework review and grading example in an online course

management system presented in the sample case study. PBAC can support policies such as only

the user who uploaded a homework document can replace it with a newer version or can submit it,

the user who submitted a homework document cannot review the homework, or a user can append

reviews to a grade report only if the review was completed for the homework. This application

system is likely to additionally utilize role-based access control to enforce policies such as only

students can submit homework or review other student’s homework and only instructors can grade

a homework document or append reviews to a grade report. For this reason, the policies in the

proposed model are defined as necessary rather than sufficient for access, since additional non-

provenance based policies may also come into play.

4.2 Contextual PBAC (PBACC) Model

The base PBAC model, PBACB, provides a foundation for enhanced access control mechanisms

that utilize provenance information. While the PBACB model certainly facilitates access control

issues, including dynamic separation of duties and work-flow control, it is restrictive in the type

of provenance data the model can capture, store, and extract. As a result, not all DSOD features

identified in the Table 4.2 can be supported in the current PBACB model. To address these issues,

an extension model, PBACC , that utilizes contextual information of subjects, actions and objects
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(which are captured as attributes and anchored to actions in provenance data) is proposed. Addi-

tionally, the base provenance data model, as discussed in Chapter 3, is also extended to capture the

contextual information attributes.

Table 4.2: DSOD Variations and Features with PBAC ( c©2013 IEEE [63])

Simple DSOD ObjDSOD OpsDSOD HDSOD TCE DSOD in PBAC
Per Role X X X X X X

Per Action X X X X X
Per Object X X X X
Task-aware X X X X
Order-aware X X X

Weighted Action-aware X X
Dependency Path Pattern-aware X

Past Attribute-aware X

4.2.1 Model Components

Figure 4.2 provides an overview of the extended provenance-based access control model. This

subsection provides more detailed descriptions of various newly added and modified components,

which form the essential parts of the extended model. The subsection also discusses the interaction

of these model components in an access control context.

Components

Essentially, the PBACC model includes the following components.

Subjects (S) represent acting users and interact with the system through initiating access con-

trol requests and performing granted requesting actions.

Actions (A): represent the set of operations on data objects. These actions are supported by

a Provenance-aware System (PAS) in the sense the corresponding provenance information can be

captured, represented, stored, and extracted.

Objects (O): represent all data pieces that are stored and utilized by the system. Objects are

the main target of protection around which access control mechanisms are built.
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Figure 4.2: PBACC Model Components ( c©2013 IEEE [63])

Requests (R) and Policies (P): represent the initiation for access to resources and the appli-

cable rules that determine the responses to such requests. Object Roles (OR) are constructs that

enable more precise policy rule specification for requests which include multiple input objects as

parameters. In addition, provenance information is utilized in assisting this process.

Dependency List (DL): contains all system-specific predefined pairs of Dependency Name

(DNAME) and Dependency Path (DPATH). Dependency names are semantic abstractions that

are assigned to specific patterns of edges, termed dependency paths, which hold significance in the

context of the specific application domains. These constructs facilitate policy specifications.

Provenance Data (PD): provenance data captures user transactions in a directed acyclic graph

structure which allows edge-traversal enabled queries to be performed on a graph node and obtain

resulting sets of vertices that provide lineage, versioning, and other provenance-related informa-

tion. Provenance Data comprises two subtypes:

• Base Provenance Data: represents the causality dependencies between request components

that are captured as results of an access request being granted and executed.

• Attribute Provenance Data: represents the contextual information that is associated with the
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main components of a request (S, A, or O).

Contextual Information (CI): captures state values of the main components of a request at

transaction occurrence time. Four different categories of CI are identified:

• Acting Users-related Context: In each application system, an acting user serves as an initiator

on access request and associated system events. The context information of acting users can

include typical information such as user ID and other forms of attributes.1

• Subjects-related Context: While the acting users are responsible for interacting with the

system, the subjects are entities that perform actions on behalf of the acting users. In a

typical RBAC system, subjects are equivalent to sessions. The contextual information of

subjects can include session id, set of activated roles, etc.

• Actions-related Context: The contextual information, which is associated with each action

instance that arises from a system event, is unique. The context information that relates

actions include temporal aspects, location, weights, etc. Action context information is most

suitable for more expressive forms of access control mechanisms.

• Objects-related Context: The object context information can include information such as

object size, URI, etc. Although the object context information can also include information

about the origin, list of previous versions, etc., these information does not need to be stored as

contextual information as such information is likely to be captured and stored in provenance

graph and can be retrieved by accessing the stored provenance data.

Essentially, the new components that are extended to the PBACB model include CI and the

associated Attribute Provenance Data. The other components were similarly defined in PBACB.

1The readers should note that while the acting user is not directly captured as a provenance entity, it is trivial to
obtain the acting user information from the subjects that the user activates. Therefore, acting user context is effectively
still captured in provenance attribute data.
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Figure 4.3: A Contextual Provenance Data Model ( c©2013 IEEE [63])

Interaction

As an access request is generated, the Access Evaluation module extracts the request information

to locate the appropriate policies for evaluation. These policies typically make use of the depen-

dency names and associated path expressions, both of which are maintained in the dependency list

(DL). The path expressions are constructed using regular expression and carry application-specific

semantics. They are used to identify the causality dependencies and contextual information of

transaction components (i.e., subject, action, and object) that are stored in the provenance storage.

Naturally, they can be used to traverse the graph-based provenance data to extract information that

is necessary for making access decision. When an access request is granted, the current contextual

information is stored as provenance data. This contextual information is uniquely anchored to the

action instance of the access transaction in provenance data.

4.2.2 Contextual Provenance Data Model

In order to capture the necessary contextual information, the base provenance data model, which

was discussed in Chapter 3, is extended. This subsection elaborates on this extension of the con-

textual provenance data model, as illustrated in Figure 4.3.
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Contextual Provenance Data Model

Recall that in the base provenance data model, the dependency edges between these vertices are

identified as wasControlledBy (or c), wasGeneratedBy (or g), used (or u), wasDerivedFrom, and

wasTriggeredBy. PBACB model utilizes mainly u, g, c dependencies for capturing the essential

relationships between entities. For more expressive and finer-grained access control, an additional

type of graph edge hasAttributeOf (or t) and an additional type of vertices, which capture the at-

tribute types and values of the core provenance entities, are introduced. PBACB model allows

subtypes of u and g edges. The model further allows subtypes of edge t. Variation of edge sub-

types is essential for finer-grained and meaningful policy expressions. In figure 4.3, these subtypes

are represented with the parameter, type, assigned with specific edge subtypes. The base prove-

nance data model notations are depicted together with the new notations introduced to capture the

concepts presented in the extended model.

Capturing User Transactions in Provenance Data

This subsection describes the perception of how provenance and attribute data of user transactions

can be captured in the system. The concept is discussed in the context of the OPM causality

dependencies and additional notations that are discussed in the earlier subsection.

In a provenance-aware system, it is assumed that all user transactions can be captured by

the mechanisms available within the capabilities of the underlying system. Without loss of gen-

erality, it is assumed that the capture of a user transaction can be simplified to a construct of

the form (Subject, Action, InputObject, OutputObject, ContextualInfoSet). Depend on the use

cases, either InputObject or OutputObject can be optional (but not both). ContextualInfoSet is

a set of all contextual information related to the transaction which is configured and selected

as necessary by the system design. Such a set should contain entries of the form (actionIn-

stance,attributeType,attributeValue) where an actionInstance represents unique ID of the action

performed. For example, (upload1,weight,3) captures the weight attribute of the upload1 action
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with the value of 3. The types of attributes and associated values to be captured are anchored to

action instances even though attribute types are associated with either subjects/users, objects or

action as discussed earlier.

As discussed earlier, while the context information of different transaction components (i.e.,

subjects, actions and objects) is captured as attribute provenance data, the attributes are anchored

to the action instances. For example, within a homework grading system scenario, a transaction

(Subject1, Grade1, HW1, GradedHW1, ContextualInfoSet-Grade1) can be captured as:

<Grade1><used><HW1>

<Grade1><wasControlledBy><Subject1>

<GradedHW1><wasGeneratedBy(grade)><Grade1>

If the essential ContextualInfoSet-Grade1 consists of the following information (ActingUser:Alice,

Subject-Role:TA, Grade-Weight:2, HW1-size: 10MB), they can be captured with the following

triples:

<Grade1><hasAttribute(weight)><2>

<Grade1><hasAttribute(activeRole)><TA>

<Grade1><hasAttribute(actingUser)><Alice>

<Grade1><hasAttribute(object-size)><10MB>

Anchoring transaction attributes to an action instance is necessary and particularly useful for

effective management of attributes. Further discussion is made in the next section.
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4.2.3 Model Specifications

This subsection provides the formal specifications for the extended components identified in the

above subsection.

Formal Specifications

1. S,A,AT,O,OR and ATT are subjects, action instances, action types, objects, object roles,

and attributes respectively.

2. G,U,G−1, U−1, T and T−1 are sets of type variations of ‘WasGeneratedBy’ and ‘Used’ de-

pendencies, matching sets of their inverse dependency types, a set of variations of ‘hasAt-

tributeOf’ attribute types, and a matching set of its inverse attribute types, respectively.

3. {‘c’, ‘c−1’} is the set of ‘WasControlledBy’ dependency type, its inverse dependency type.

4. Provenance data PD forms a directed graph and is formally denoted as a triple< V,E, L >:

• V = S ∪A∪O∪ATT , a finite set of subjects, action instances, objects, and attributes

that have been involved in transactions in the system and are represented as vertices;

• L = {‘c’} ∪ U ∪G ∪ T ∪ {‘c−1’} ∪ U−1 ∪G−1 ∪ T−1, a finite set of dependency type

labels and attribute type labels;

• E ⊆ {(A× S × ‘c’) ∪ (A× O × U) ∪ (O × A×G) ∪ (S × A× ‘c−1’) ∪ (O × A×

U−1)∪ (A×O×G−1)∪ (A×ATT ×T )∪ (ATT ×A×T−1)}, denoting provenance

graph edges, is the set of existing dependencies and attributes types in the provenance

data. 2

5. DNAME, disjoint from L, is a finite set of abstracted names for a composition of depen-

dency types and attribute types.

2The readers should note that only certain kinds of edges can exist (no O to O edge for example) and only certain
labels can be applied to certain kinds of edges (A to S edge must be labeled ‘c’ for example). By definition each edge
is accompanied by its inverse edge to facilitated traversal in forward and backward direction. If the inverse edges are
dropped the graph becomes acyclic as in the provenance graph.
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6. Let Σ be an alphabet of terms in L∪DNAME. The set DPATH of regular expressions is

inductively defined as follows:

• ∀p ∈ Σ, p ∈ DPATH; ε ∈ DPATH;

• (P1|P2), (P1.P2), P1∗, P1+, P1? ∈ DPATH , where P1 ∈ DPATH and P2 ∈ DPATH .

7. DPATHL ⊆ DPATH , is the set of regular expression using only alphabet of terms in L.

8. DL : DNAME → DPATH , defines each dname ∈ DNAME as a path expression. DL

is also viewed as a list of pairs of dependency names and corresponding dependency paths.

9. λ : DNAME → DPATHL, maps each dname ∈ DNAME to a path expression using

only dependency type and attribute type labels l ∈ L by repeatedly expanding the definitions

of any dnamei ∈ DNAME that occurs in DL(dname).

10. P is a finite set of informal XACML-compatible policies.

11. An access evaluation procedure AccessEvaluation(s, a, O) which utilizes the following

functions:

• γ : AT → P , a mapping of an action type to a policy.

• δ : {S ∪ A ∪ O} × DPATHL → 2V , a function mapping a vertex (except attributes

in ATT ) and a dependency path to vertices in PD such that v2 ∈ δ(v1, dpath) iff there

exists a path in PD from v1 to v2 whose edge labels form a string that satisfies the

regular expression dpath.

• F is a set of evaluation functions which can be used to evaluate a set of vertices. These

functions are application-specific and are designed to suit policy requirements of the

underlying target system.

• RF is a set of rule-evaluation functions which can be used on the result returned by a

function f ∈ F and returns a Boolean.
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• RuleCombine : 2Boolean → Boolean, is a function which evaluates a set of Boolean

values through conjunction and disjunction.

Discussion

This subsection describes how the contextual provenance data model can be utilized in the PBACC

model. Specifically, the components (S, A, O, and ATT) are captured as vertices on the provenance

graph. Causality dependencies types and subtypes are used to label the directed edges between the

vertices of types (S, A, and O). Attribute types and subtypes are also used to label the directed

edges between A and ATT vertices. Also, it is currently allowed only incoming edges to attribute

nodes and no outgoing edges from them. The u, g, t edge types (but not c) are further differentiated

by assigning a subtype. These variations of edges are facilitated to capture different semantics or

types of the dependency relationships between corresponding edges. In addition, each edge type

is accompanied with an inverse edge type which allows traversal toward the future transaction

instances in provenance data.

There are two ways to capture the attribute provenance data in the graph-based data model.

• The attribute data of a vertex s, a or o is stored as an attribute vertex connected to the corre-

sponding vertex.

• The attribute data of a vertex s, a or o is stored as an attribute vertex connected to only the

vertex a. Specifically, attributes of s and o are connected to a vertex a that is associated with

s, o in the same transaction.

The model in this dissertation chooses the second approach. Contextual information of a transac-

tion is stateful and only meaningful in the context of the associated action instance. Anchoring

such stateful information to any other vertices (of either type S or O), which can be stateless, may

result in an inconsistent and incorrect policy evaluation. For example, a single subject instance

can be involved in multiple different action instances while activating different roles for different

actions. In such case, if provenance data stores the list of active roles as an anchored attribute to
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the corresponding subject, multiple attributes with different lists of active roles may exist. This

then creates difficulty in identifying which list is for which transaction. On the other hand, as there

could be only one action instance for each transaction, anchoring attributes to a corresponding

action can eliminate this problem.

The readers should note the difference between the query-tracing processes of the PBACC and

PBACB models. Specifically, PBACB only allows the starting node, from which a regular path

expression query can be traced, to be exclusively O. The model relaxes this restriction and allows

the starting node to be any of the three vertex types (S, A, and O).

4.2.4 Policies and Access Evaluation

Based on the model components, access requests can be evaluated and decided following the access

evaluation algorithm provided in Algorithm 4.2. Policies can be informally specified using a policy

grammar that is modified and incrementally extended from the grammar provided in [67]. A policy

specification provides a mechanism for matching a request to a corresponding policy rule-set. Each

policy rule utilizes pairs of a dependency name construct, which can be applied with a function γ

to arrive at base dependency path patterns, and an associated starting graph node to be applied with

a function δ that traces through the provenance graph to obtain a set of resulting nodes. Another

function, f , can then be applied on the resulting set of nodes to obtain values that can be used to

assist the evaluation of a rule condition with a function rf . All rules decisions are then combined

in accordance to a RulesCombining procedure that is specified in the policy body.

All the specific evaluation functions associated with a particular instance of request are ob-

tained from the rule specification in the policy body. For example, consider the sample policy 4

provided in the next section. In this policy, the function f is specified as the sum function and the

rf function is specified as “>=” 3.
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Algorithm 4.2 AccessEvaluation(s, a, O)
1: (Rule Collecting Phase)
2: at← a’s action type
3: p← γ(at)
4: RULE ← access evaluation rules Rule found in p
5: (Evaluation Phase)
6: for all Rule in RULE do
7: Extract the path rule (StartingNode, dname ∈ DNAME) from Rule
8: Extract type of StartingNode as S, A, or O
9: if type is O then
10: Extract ObjRole of StartingNode
11: Determine the object o ∈ O, whose role is ObjRole
12: Set value of StartingNode to o
13: if type is S then
14: Set value of StartingNode to s
15: if type is A then
16: Set value of StartingNode to a
17: Extract dependency path expression dpath ∈ DPATHL from dname using λ function
18: Determine vertices V Set by tracing provenance data PD through the paths expressed in dpath that start from the vertex StartingNode

using δ function
19: Extract f ∈ F from Rule and execute it on V Set
20: Extract rf ∈ RF from Rule and execute it on f(V Set)
21: Store rf(f(V Set)) in RuleEval
22: Execute RulesCombining(RuleEval) and return the Boolean result

4.2.5 DSOD in PBACC Model

This subsection illustrates how the PBACC model can be utilized to support traditional DSOD

policies. The subsection also identifies and discusses several limitations of current approaches as

well as additional unique DSOD and some access control features that can be supported with the

PBACC model.

Traditional DSOD in PBACC Model

This subsection provides a set of informal policies to express the various DSOD constraints in a

provenance-aware system. In the following sample policies, several sample dependency names

are assumed to be defined accordingly in the dependency list DL of the application system. These

dependency names can be broken down to a dependency path of basic edge labels (i.e., u, g, c

variations), as defined in the model specification, and then utilized in regular path queries. Fur-

thermore, the readers should note that these informal policies can be easily translated to equivalent

XACML policies such as the representation of the sample policy 2 as shown in Listing A.3.
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Sample Policy 1: represents a simple DSOD concern in a single session only for simplicity. In

particular, a subject should not be active with the role “Reviewer" to activate the role “Student".

allow(sub,activate,Student)⇒

Reviewer /∈ δ (sub, performedActionsOf:hasAttributeOf(activeRoles))

In this example, the dependency name performedActionsOf is used to determine all the

actions performed by the subject so the resulting action vertices can be used to identify all the

active roles of the subject with hasAttributeOf(activeRoles). Then the policy evaluates whether

the “Reviewer" role is among the active roles found by the δ function.

Unlike the other DSOD variations that were identified earlier, simple DSOD does not require

any historical information as it only utilize information of currently active roles of the user of a

subject. However, it can be still achieved by using provenance data only even though it may not

be ideal to exercise. To achieve this, as shown above, it is first necessary to find all the actions

performed by the subject then further find all the active roles of the identified actions.

This approach can also address simple DSOD for multi-sessions where active roles of all active

sessions of the same user need to be considered by identifying all the active subjects of the same

user in provenance data. To achieve this, a provenance system needs to capture a user’s activities

on subject creation and termination. This information can be used to identify all the active roles

of currently active subjects of the same user. Another way of achieving this is by simply capturing

all the activated roles and deactivated roles of a user then subtracting the deactivated roles from

activated roles to get currently active roles of the user. This can be done by (1) identifying an acting

user of a requesting subject, (2) finding all subjects that are currently active, (3) finding all roles

activated by these subjects, (4) finding all roles deactivated by these subjects, (5) subtracting the

deactivated roles from the activated roles, and (6) comparing the resulting roles with the requested

role to see a conflict.

Sample Policy 2: represents an ObjDSOD concern that requires the requesting subject on

replacing a homework document to be activated by the same acting user who activated the subject

on uploading it.
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allow(sub,replace,o)⇒

δ(sub,hasPerformedActions:hasAttributeOf(actingUser)) ∈ δ(o,wasUploadedBy) ∧

count(δ(o,wasSubmittedVof)) = 0

In this scenario, to allow a subject sub to perform (action:replace) on the object (o), the acting

user of sub should have performed (action:upload) on that particular object, either through the

same or different subjects. The acting user of sub can be found by tracing provenance graph

starting from o and following the path identified with the expression hasPerformedActions :

hasAttributeOf(actingUser). The user who uploaded o can be obtained by tracing through

the provenance graph starting from o and following path as defined with the dependency name

wasUploadedBy. In addition, the dependency name wasSubmittedVof is used in a separate rule to

specify an additional rule that the homework object should not have been submitted as well.

Sample Policy 3: represents a history-based DSOD (HDSOD) concern by requiring that

a request to review a homework document can only be allowed after the object is submitted and

before it is graded.

allow(s,review,o)⇒

count(δ(o,wasSubmittedVof)) 6= 0 ∧

count(δ(o,wasGradedOof−1)) = 0

Sample Policy 4: represents a weighted-action DSOD concern where the weight of each review

process is summed up and the total is used to regulate the access request to grade an object.

allow(sub,grade,o)⇒

sum(δ(o,previousReviewProcesses:hasAttributeOf(Weight))) >= 3.

Dependency names are utilized in all policies for specifying the policy. While careful selection

of such named abstractions can convey the semantics of the provenance graph path, the dependency

path expressions are ultimately responsible for describing a precise path and used for actual tracing

process. The readers should also note that while a dependency path expression can be paired with
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any types of starting vertex (either subject, object, or action), for efficiency and effectiveness, one

type of starting vertex is preferable to another in different cases. The HWGS example can utilize

dependency path expressions with object starting vertices for addressing ObjDSOD and subject

starting vertices for simple DSOD, OpsDSOD and HDSOD issues.

Unique DSOD Features in PBACC Model

The utilization of provenance data in the form of dependency paths supports the traditional DSOD

variations effectively. Furthermore, it also supports novel features that have not been discussed

much, if at all, in the literature. This subsection elaborates on these unique features that PBACC

realizes.

Feature 1: Awareness of Past-Action attribute. The context information of the system compo-

nents provides insightful information on the current state of the system. The information is useful

not only for access control mechanisms in the current state, but can also make an impact on access

control usages in future states. PBACC provides convenient mechanisms for storing and carrying

the state attributes of a current action instance into the future, at which point they are past attributes

of the current action instance. This novelty can be demonstrated with the weight-action example.

When an action transaction is executed in the system, it is assigned a weight as specified by the

system policy or setting. That weight attribute is stored in the provenance data in association with

that particular action instance. In some future state, the system may assign a different weight value

to that action type. An access control policy based on weighted actions can base policy rules on

either the current weight attribute state or the ones captured in the past action transitions. PBACC

facilitates this process and can support both type of mechanisms.

Feature 2: Dependency Path Pattern-based DSOD. Traditional DSOD approaches base control

on some fixed and restrictive form of control unit, especially actions. With regular expression-

based dependency paths, it is possible to achieve much more expressiveness in the specification of

the control unit. In particular, it can be expressed a wide variety of path patterns which includes

sequences, repetitions, existences, and any combinations of actions. Additionally, the intrinsic
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characteristics of provenance data enable versioning of a data object and linkages of distinct but

related data objects. This enables the grouping of objects or objects versions with meaningful

semantics, on which DSOD constraints (e.g., conflicting actions on current and past object versions

instead of a particular object), can be specified.

The identified features above allow a broader family of DSOD policies and constraints to be

specified. This goes hand in hand with the complexity a provenance-aware environment and all

its huge amount of data can produce. It seems natural that as the amount of data and complexity

rises, so do concerns of DSOD involved in such environment. Utilizing provenance constructs

such as dependency path patterns and associated dependency names can lay a strong foundation

for addressing this phenomenon.

4.2.6 Pre-Enforcement Access Evaluation

Motivating Problems

When a user, represented by a subject, initiates a request for an action on a system resource, a

typical procedure consists of several steps as follows:

1. The request is first evaluated for authorization decision. This is typically performed by

the Policy Decision Point and requires several components for various information that is

necessary for making the decision.

2. If the request is denied, the Policy Enforcement Point delivers the denial result to the user.

Otherwise, the granted request action on resource is executed and subsequent outputs/results

are also delivered to the user.

3. Once the requested action is successfully completed, corresponding provenance data are

generated to capture all information regarding the executed action.

The readers should note that between each of the above procedure steps there exists a time

delay. Depend on the nature of each step, such time delay may be small or costly and can heavily
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impact the performance of any system that utilizes PBAC approach. Specifically, in a system, there

can occur a scenario where subsequent initiated requests can depend on the result of prior requests

evaluation and execution. To be more specific, if the authorization of both requests require the

same provenance data set for evaluation purpose, then the later request is required to utilize the

appropriate provenance data that is updated as result of granting the earlier request. Delaying

the evaluation of a request in order to wait for completed enforcement of prior dependent request

and related provenance data update can substantially degrade performance. Ideally, it is desirable

for the evaluation of a request to be started once the evaluation of the prior request is completed.

Waiting for steps 2 and 3 as described above can assure the safety property of the system, but

introduces unnecessary overhead which needs to be reduced.

Solution Approaches

In order to allow PBAC evaluation of the next request to start after the previous request decision is

returned, some modification to the existing PBACB model can be introduced. Essentially, a new

type of provenance data that is temporary can be used. Temporary provenance data keeps track

of all requests that have been evaluated but corresponding enforcements had not been executed.

A new subtype of the “used” edge, “used(request)”, can be used to indicate that a request for an

action is instantiated and an attribute edge “hasAttribute(requestEval)” that connects an attribute

node that has either “granted/denied” values to denote the request evaluation. Such an update to

the provenance data set can incur minimal run-time cost and subsequently be used for evaluation.

Once a granted request-action is enforced, a new action node instance can be generated that used

the “used(input)” edge to denote successful execution. The temporary provenance data is then

obsolete and can then be deleted for efficient space.

While this approach does not reduce the gap between the initial reception of the request to

its time of evaluation completion, it does take away the gap between evaluation and enforcement

completion. Typically for systems where actions can take a long time to complete execution, this

approach does ameliorate such run-time delay.
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Sample Scenario

Building on the HWGS scenario, this subsection proceeds to demonstrate the above concepts.

Suppose for every submitted homework object, there can only be 2 reviews on that homework

object. After 3 reviews processes have been performed, any subsequent review is denied. Suppose

Alice submits a review to homework hw1. Since hw1 has not been reviewed before, access control

decision is evaluated to be granted. This can generate the following triples in the provenance data

set:

<review1><used(request)><hw1>

<review1><wasControlledBy><subAlice>

<reviewedHw1-1><wasGeneratedBy(review)><review1>

<review1><used(hasAttribute(requestEval))><granted>

Next, Bob and Charlie also submit their reviews for hw1. Authorization evaluation for Bob’s

request recognizes that only Alice has reviewed the hw1 object before and grants access to Bob.

The access decision is stored in the provenance data set as above before the review action is ex-

ecuted by the system. Charlie’s request is then processed by the authorization evaluation, which

recognizes that Bob’s request has been granted and therefore denies Charlie’s request.

4.3 An XACML-based PBAC Prototype

In order to demonstrate the feasibility of the PBAC models, a proof-of-concept prototype, which

is based on the XACML architecture and associated implementation, is implemented. This section

elaborates on the extended XACML architecture, the prototype implementation and evaluations.

Insights on the experimental results are then provided.
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Figure 4.4: An Extended XACML Architecture ( c©2013 IEEE [63])

4.3.1 An Extended XACML Architecture

As discussed in Chapter 2, the XACML framework is a popular and industry-standard tool that

is used in many commercial and research products. This subsection aims to extend the XACML

framework with PBAC-enabled components.

PBAC Reasoner

In order to enable PBAC mechanisms in the XACML framework, an extension to the existing

XACML architecture, as shown in Fig 4.3, is proposed. Specifically, a new component, the PBAC

Reasoner, is introduced. The PBAC Reasoner communicates directly with the PDP and PAP com-

ponents and is responsible for the specification of provenance-based access control policies. It

also provides specific mechanisms for storing and extracting provenance data for access control

request evaluation. The PBAC Reasoner component is further composed of three additional sub-
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components:

• Dependencies Repository (DR): The dependencies repository component is responsible for

storing application-specific dependency lists. This dissertation assumes only one set of de-

pendency path patterns and associating dependency name constructs is at use, as only one

system is in concern. However, it is possible to have multiple dependency lists when multi-

ple systems are considered, as in a cloud or distributed environment. The dependency list is

utilized by the PAP for policy specification purposes.

• Provenance Data Repository (PDR): The PDR component is responsible for storing captured

provenance information. This can include both the base provenance as well as attributes data.

• Query Engine (QE): The query engine is mostly associated with the provenance database

employed by the PDR. It is important that the QE is capable of performing regular path

queries as provenance graph traversal is essential in the PBAC approach.

4.3.2 Prototype Implementation

The prototype employs various state-of-the-art tools available in the community. It uses Sun’s

XACML3 implementation for policy specifications and the existing implementations of the XACML

components. The PDR utilizes the Jena framework [21], where provenance graph is stored in RDF-

triples [51] format. This dissertation uses Jena-2.7.4 and the corresponding ARQ package 4. The

query engine associating with Jena is ARQ, which was utilized to execute SPARQL [72] queries on

the RDF-format provenance graph database. Dependency lists are simply implemented as array-

lists of pairs of String values. To enable the communication between the existing components of

the XACML framework, specifically the PDP and the PBAC Reasoner components, a specialized

function that can be incorporated to the XACML framework at run-time was implemented. The

function is essentially an extended class to the FunctionBase class available in Sun’s framework.

The function essentially performs the tasks equivalent to the functions δ elaborated in the model
3https://www.oasis-open.org/
4http://jena.apache.org/
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Figure 4.5: Performance of Single PBAC Requests ( c©2013 IEEE [63])

specification. It it assigned a NAME-ID, in this case “provenance-query-SPARQL”, and then in-

corporated, after which it can be used in policy rule-sets, as shown in Listing A.3.

4.3.3 Experiments and Evaluation

Experiments

For the performance evaluation of the prototype, an experiment was conducted to test and capture

the run-time execution of a request instance. The implemented prototype was deployed on a virtual

machine instance that is launched with an Ubuntu 12.10 image with 4GB Memory and a 2.5 GHz

quad-core CPU. Sample XACML policies and sample XACML requests, which would require

the prototype to invoke the PBAC Reasoner components to gather necessary data for the access

decisions, were designed. More specifically, it was measured the time it takes to complete the

following operations flow:

• The access request is received by the PDP.
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• An appropriate access policy is matched.

• Relevant parameters are extracted from the policy and passed to the PBAC Reasoner.

• SPARQL regular path queries are formed by utilizing the DR and QE configuration.

• Queries are executed against PDR and results are returned to the PDP.

• PDP performs evaluation process on the returned results and returns the final decision.

These experiments did not include the enforcement processes as they are application-dependent

and do not impact the overall aspects of PBAC evaluations.

For the application domain, a simulation of the HWGS scenario, as described chapter 3, is

done. Mock data of possible action transactions, which can occur within the system and captured

them using the proposed provenance data model, was generated and then stored as RDF-format

triples within an in-memory Jena model. A sample of this mock data is depicted in Listing A.4.

Regular-path SPARQL queries were generated and executed against the Jena in-memory model

using the ARQ engine. Sample queries are provided in Appendix A.3.

It is recognized that the bottleneck of the prototype lies in the execution of regular path queries.

The performance of such query execution depends heavily on the shape of the provenance graph

and the pattern after which the traversal needs to be done. Therefore, in generating the mock

data, two types of shape a provenance graph takes can be considered. One requires wide and the

other requires deep traversal. A wide provenance graph traversal is necessary to query a large

amount of actions that all take a single object as input. For example, in the HWGS scenario, one

submitted homework object can be reviewed by a multitude of reviewers. A query which searches

for all reviewers of an object would have to traverse through all edges branching out from the

object itself. A deep provenance graph traversal is necessary to query a path of cause and effect

relations between different versions of an object. For example, an uploaded homework object can

be replaced multiple times by its owner. To obtain the original version of a homework document,

a query needs to traverse back through a large number of edges.
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In order to test the flexibility of the framework, the performance of the framework against var-

ious quantities of edges that need to be traversed (the width and depth of a provenance graph) was

evaluated. The experiment, where the prototype was validated against “extreme”, yet reasonable,

thresholds, was conducted. In particular, it was evaluated requests that would require incremental

number of edges (to be traversed) in the quantities of 2000, 4000, 6000, 8000, 10000 and 12000.

To produce precise results, requests of wide type would only require wide edges traversing. The

same configuration applied to requests of deep type.

Various experiments were conducted to provide some insights into the scalability of the pro-

totype and approach. Specifically, the throughput of 500 independent requests was evaluated. In

other words, the evaluation of one request does not depend on the evaluation result of another re-

quest. The throughput results further validate the feasibility of the approach, as will be promptly

elaborate after presenting the experimental results next.

Evaluation

The experimental results for single request evaluation are shown in Figure 4.5. The heaviest traver-

sal query case obtains the result of 0.718 second per deep request and 0.069 second per wide

request. At the same time, for the lightest traversal query, the result is 0.017 second per deep re-

quest and 0.014 second per wide request. The readers should note that for both types of queries,

the resulting run-time demonstrate the feasibility of the prototype. While a query that requires a

deep traversal shows increased run-time, such phenomenon is most likely because of the SPARQL

implementation of query execution that utilizes recursive calls for each successive process step.

Regardless, an observation is made that in a practical system deployment, the depth and width

traversals of the associated provenance graph do not typically exceed such quantities. Further-

more, in certain special cases, while a provenance graph can grow extremely large in both depth

and width, a practical application system and its associated provenance graphs are expected to re-

semble a large set of disconnected graph components with small depth and width values. Further-

more, it is perceived that in the case of a large provenance graph, various optimization approaches,
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such as requests grouping and results caching, can be performed to improve the run-time results.

The discussion of these concepts lies beyond the scope of this dissertation and belongs in future

work. Nonetheless, although the obtained results are not optimal, they demonstrate the feasibility

and potential enhancement of the prototype together with the PBACC approach.
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For throughput evaluation, the results in Figure 4.6 show that in the width-tracing scenario, the

performance overhead increases linearly with the increase in the number of traced edges. In the

depth-tracing scenario, the performance overhead increases still linearly, but at a higher slope. In

this case, the heaviest tracing query case obtains the result of 500 requests per 80 seconds (0.16

second per deep request) in depth-tracing scenario and 500 requests per 20 seconds (0.04 second

per wide request) in width-tracing scenario. Simultaneously, for the lightest tracing query, the

result is 500 requests per 7 seconds (0.014 second per deep request) and 500 requests per 7 seconds

(0.014 second per wide request). This means that at the lightest tracing scenarios, the performance

overhead of both wide-tracing and deep-tracing is very low and hardly differentiable. In fact,

according to canonical data structure textbooks, the asymptotic time complexity of traversing a
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graph is O(n+e), where n is the number of nodes and e the number of edges in the traversed graph.

The experiments consolidate the theoretical analysis. The heavier run-time increase of the depth-

tracing query is a result of the SPARQL implementation of query execution that utilizes more

recursive calls for each successive process step in depth-tracing scenario than that in width-tracing

scenario.
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Chapter 5: A PBAC ARCHITECTURE FOR CLOUD IAAS

Acknowledgment: The materials in this chapter are published in [64].

Provenance-based Access Control (PBAC) is an effective access control approach that can

utilize readily provided history information of underlying systems to enhance various aspects of

access control in a computing environment. The adoption of PBAC capabilities in the autho-

rization engine of a multi-tenant cloud Infrastructure-as-a-Service (IaaS) such as OpenStack can

enhance the access control capabilities of cloud systems. Toward this purpose, tenant-awareness

is introduced to the PBACC model by capturing tenant as contextual information in the attribute

provenance data. Built on this model, a cloud service architecture, which provides PBAC autho-

rization service and management, is presented. It is discussed in depth the variations of PBAC

authorization deployment architecture within the OpenStack platform and implement a proof-of-

concept prototype. Analysis of the initial experimental results and discussion of approaches for

potential improvements follow.

5.1 Tenant-aware PBAC in Cloud IaaS

As depicted in Figure 5.1, the primary components of PBACC can be briefly described as follows.

Subjects represent human users interacting with a system. Actions represent the type of possible

interaction a subject can perform in the system. Objects (or Resources) represent the type of data

entities that exist within a system that require authorization protection for security goals. To inter-

act with a system, a human user, through associated subjects, initiates Requests that are evaluated

based on Policies to determine the access decision (granted or denied). Provenance Data contains

information on past system events as results of granted access requests and includes two types.

1 Base provenance data captures primary component-information of granted and executed access

requests while Attribute provenance data captures the contextual information associated with the

1While provenance data can capture access requests that are not granted, for simplicity, it is assumed that only
granted accesses are stored in provenance data.

73



Figure 5.1: A Tenant-aware PBACC Model

executed access requests.

In order to adopt tenant-awareness, it can be straightforward to view tenant as a special type

of contextual information that can also be captured as attribute provenance data, as modeled in

PBACC . It is then possible to use the relation type “associated with” to capture the semantic

relations between tenants and other components such as: Subjects, Actions, Objects, Dependency

Lists, Policies, and Provenance Data. Essentially, a set of atomic, or “base”, application-specific

and defined causality dependency edges between provenance graph vertices can be expressed with

regular-expression based patterns. The graph vertices represent model components that constitute

the primary entities of a system such as users or resources. This approach allows more expressive

capture of relations between the model components. Meaningful combinations of dependency path

expressions can be captured with abstract dependency-name constructs which represent more ab-

stract application-specific semantics of the underlying system. An example is a dependency name

“wasOriginallyUploadedBy” which captures any combination of dependency path expressions of

actions, which can be multiple instances of modify or copy and ultimately upload, on a particu-

lar virtual image. Further application of attribute edges on the upload action instance can reveal

the cloud user who originally uploaded the virtual image. These constructs can also be used for

PBAC policy specifications. When an access request is generated, the access evaluation module
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extracts the request information to locate the appropriate policies for evaluation. When an access

request is granted, the current contextual information is stored as provenance data. This contextual

information is uniquely anchored to the action instance of the access transaction in provenance

data.

5.2 Provenance-aware Access Control Cloud Architecture

This section discusses a provenance-aware architecture that can enable PBAC capabilities in cloud

environment. Specifically, it describes the main components and their interactions, and how the

services can be deployed given various design criteria.

5.2.1 Architecture Overview

An overview of the architecture of the dissertation’s approach is depicted in Figure 5.2. The three

major types of services within this architecture are identified as follows:

Cloud Service (CS) essentially provides a particular IaaS service to client tenants. The types

of services include computing (management of virtual resources), authorization, virtual networks,

and so on. Examples of the services can be Amazon Web Services Elastic Compute, OpenStack

Nova, etc. These services essentially provide the functionality of the cloud.

Provenance Services (PS) is an IaaS service that is proposed with the purpose of capturing and

managing provenance data that can be generated from any other typical cloud service. The prove-

nance data captures the history information of system events occurring within the cloud services

and can be utilized for many purposes. This dissertation’s focused usage is on PBAC.

PBAC-enabled Authorization Services (PBAS) is an IaaS service that is proposed with the

purpose of providing authorization capabilities to all other cloud services that require authoriza-

tion. The authorization service is capable of providing PBAC features, but at the same time it can

also provide other forms of access control including Role-based Access Control, Attribute-based

Access Control, etc. The focus of this dissertation is on the provision of PBAC capability for the

authorization service.
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Figure 5.2: A Provenance-aware Cloud Architecture Overview

In summary, the three service types altogether establish an infrastructure that enables PBAC

in an IaaS cloud. Specifically, the Cloud Service provides the PS with raw system events that PS

selectively stores at provenance storage. The stored provenance data is then used to provide PBAS

which enhances the security to the Cloud Service.

While this work mainly focuses on the scenario where access requests are granted, the readers

should also note that it is possible to capture and store the information relating to access requests

being denied. This information can allow additional control capability in a system. For example,

if the provenance data of an object reflects that there exist three consecutive instances of request

denial for a particular action type within certain recent request interval, it may lock the object from

any future access or raise a flag indicating a potential threat or vulnerability within the system and

request immediate attention with appropriate countermeasures. This dissertation does not consider

denied events as part of provenance data for simplicity and leave it for future study.

5.2.2 Conceptual Architecture

This subsection, as shown in Figures 5.3 and 5.4, identifies and describes the interaction between

the logical architectural components of the three service types. These components establish the

fundamental and functional aspects of the architecture approach and can be applied to whichever

deployment methods that are discussed in the chapter.

Components Any regular cloud service includes:
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• Policy Enforcement Point (PEP): is responsible for receiving and enforcing an access re-

quest from a user. The enforcement is based on the evaluation results of that access request

generated from the authorization service.

• A User is able to generate a request to the cloud service through any forms of interfaces such

as web browsers (e.g., OpenStack Dashboard) or command-line interfaces (e.g., OpenStack

Nova pythonclient).

The provenance service includes:

• Provenance Data Collector (PDC): is responsible for receiving raw system events data cap-

tured from a granted service action request being executed within individual services and

potentially performing some filtering to select necessary data only.

• Provenance Data Manager (PDM): is responsible for transforming the collected raw data

received from the PDC into provenance graph data format as well as managing the resulting

provenance data. The management responsibilities include storing and loading provenance

data in and from a database, as well as forming and executing provenance graph queries and

formatting and returning query results thereafter. A sample query is included in Appendix

A.3.

• Database (DB): represents persistent storage.

The PBAC-enabled authorization service includes:

• Policy Administration Point (PAP): is responsible for managing access control policies by

enabling policies specification, storage and retrieval.

• Policy Information Point (PIP): is responsible for looking up relevant information that is

necessary for making an access decision. In regard to PBAC, the PIP is tasked with delivering

responses to provenance data requests to the relevant provenance service.

77



Figure 5.3: A Provenance Service for Cloud IaaS

• Policy Decision Point (PDP): serves as the main computing process in deciding how a re-

quest should be resolved. In particular, the PDP receives the requests from the PEP, looks

up the policy from the PAP, and requests information from the PIP to make decisions, which

are then returned to the PEP.

Interactions Next, it will be described how the services perform whenever an access request

comes in, as illustrated in Figure 5.3 and Figure 5.4. When a request is initiated by a user through

any user client interface, the PEP receives the request and proceeds to verify the request with

the authorization service by forwarding the request with relevant content to the PDP that resides

in the PBAS service. In Figure 5.3, this interaction is abstracted in steps 2 and 3. It is further

elaborated in Figure 5.4 through steps 2-11. Figure 5.3 demonstrates what happens after the access

request evaluation process is completed. Essentially, if a request is granted, the PEP enforces the

execution of the requested action. The corresponding system event is then captured and sent to

the PDC component of the provenance service where certain filtering can be performed to remove

unnecessary data. The filtered data is then passed to the PDM for formatting into appropriate

provenance data graphs for storage for later use. This completes a functional cycle in the context

of an access request being directed at a cloud service.

In Figure 5.4, upon receiving the request from the PEP (2), the PDP proceeds to perform the
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evaluation procedure which includes, in sequential order, retrieving the correct policies through the

PAP (3,4), searching for information required for policy rules evaluation through the PIP (5,6,9,10),

and computing the actual evaluation decisions and returning the final results back to the PEP for

enforcement (11). In this architecture, the PIP is responsible for looking up relevant provenance

information in the provenance service for carrying out PBAC-related policy rules. The PIP per-

forms this task by communicating with the PDM component of the provenance service by sending

query templates. The PDM loads provenance data from its storage, forms appropriate queries and

executes them to extract necessary provenance information to return to the PIP.

The above process can be demonstrated with the following example. Suppose a user Alice

requests to delete a particular virtual machine, “vm1”, in a tenant. The policy states that only a

user who creates and stops a virtual machine instance can delete it. The PEP receives the request

from Alice and delivers necessary information to the PDP. The PDP parses the request information,

matches the request to the correct policy through the PAP to extract appropriate rules for the action

“delete”. The PIP then sends information including “vm1” and dependency path patterns, e.g.

“wasVMCreatedBy”, that express the semantics of creating and stopping users of a virtual machine

instance to the PDM. The PDM forms appropriate queries using the provided information, executes

the queries and returns the results back to the PDP. As Alice is shown to be the user who created

and stopped “vm1”, the PDP sends the approval to the PEP which starts the enforcement of the

action. Upon completion, the PEP sends the events information to the PDC. The PDM can then

at least generate provenance data which captures the event where Alice performed “delete” on

“vm1”.

5.2.3 Deployment Architecture in OpenStack systems

Given the above logical architecture discussion, the focus is shifted to how the services can be

deployed in a cloud IaaS OpenStack system.

Most extant OpenStack cloud services often embed their own authorization service compo-
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Figure 5.4: A PBAC-enabled Authorization Service for Cloud IaaS

nents that can enable authorization mechanisms including RBAC and ABAC. 2 In order to enable

PBAC authorization mechanism for the extant OpenStack services, it is essential to identify sev-

eral deployment architectures based on where PS and PBAS are implemented, which presents their

own strengths and weaknesses.

First, similar to the current deployment of authorization components, these services can be

integrated as structural components of an extant cloud service. In a cloud environment where

sharing provenance data in multiple services is not a necessity, this integrated services deployment

can significantly reduce the communication decision latency that takes place. Current standalone

services, such as Nova and Glance, communicate over HTTP REST interface that can introduce

expensive latency. Communication between components within the same service, as either inter-

process or intra-process, is much less expensive in comparison. However, the extant cloud service

may have more computing load to deal with as it is required to maintain its own PBAS and PS

components. Essentially, the integrated service has to collect, store and manage its own provenance

data. This can also reduce the ease of services integration as it becomes more difficult to update

changes to any of the embedded services.

Furthermore, in a cloud environment where cross-service provenance data sharing is necessary

2The Swift component utilizes a different form of authorization than most other OpenStack services.
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for purposes such as PBAC, a deployment of integrated PBAC-enabling services is required to

employ provenance data sharing mechanisms. As each service stores and manages its own prove-

nance data, PBAC decisions of a service require the provenance data of a different service. The

requiring service has to initiate a request to the different service, therefore introduces communi-

cation decision latency over HTTP channels. In order to mitigate decision latency, each service

can take the approach of maintaining duplicate provenance data of all relevant services. However,

this introduces the necessity to synchronize all provenance data storage, and results in synchro-

nization latency over HTTP channels. In scenarios where immediate synchronization is vital to the

correctness of a PBAC decision, synchronization latency can affect decision runtime even if the

evaluation process is done locally to the extant service. In scenarios where periodic synchroniza-

tion is acceptable, optimal decision latency can be achieved.

Individual cloud service management of locally maintained provenance data can be compli-

cated. The complications can be alleviated with the standalone deployment method with the cost

of communication latency. Essentially, a standalone provenance service enables central provenance

data storage and management, which facilitates duplication and synchronization.

In addition, it is possible to employ several varieties of these two deployment methods, which

can be termed hybrid deployment, to alleviate some of the issues faced by the above two deploy-

ment approach. For example, since not all provenance data is required for PBAC uses, only PBAC-

relevant provenance data is necessarily duplicated in individual regular cloud services. Other

provenance data, which can be used for auditing, can be stored and managed by standalone prove-

nance service. This dissertation uses the standalone architecture for the OpenStack implementation

and experiments.

5.3 An OpenStack Implementation

This section emphasizes the application of the approach on the open-source cloud management

platform of OpenStack.
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Figure 5.5: An Overview of OpenStack Authorization

5.3.1 Overview of OpenStack Authorization Architecture

At the IaaS layer, OpenStack comprises several components that provide services to enable a fully

functional cloud platform. Each of these components controls access to specific resources through

locally maintained JSON policy files. At the IaaS layer, the resources to be protected are composed

of API functions and virtual resources such as virtual machine images and instances.

Figure 5.5 captures a simplified view of the authorization as similarly performed by most Open-

Stack components. While the solid arrows denote information flow, the fine-dashed arrow indicates

the Keystone component is responsible for providing identity service to other OpenStack compo-

nents. This also provides authorization-required information indirectly using a token.

1. When an access request is made, authentication credentials need to be submitted to Keystone

for validation.

2. Once validated, Keystone returns a token which contains necessary authorization informa-

tion such as roles.

3. The token is then included in the request that is sent to the specific service component.

4. Authorization information is extracted from the token and used in evaluating the rules spec-

ified in the policy file native to that service.

5. The final evaluation and/or enforcement result is then returned to the requester.

82



Policy rules can be specified as individual rules of each criteria or a combination of rules. For

Grizzly release, OpenStack authorization engine supports two types of rules: RBAC [77] where

decisions are based on role field, and ABAC [46] where decisions are either based on the value of

a specific field or the comparison of multiple fields’ values. A sample PBAC policy for Nova is

depicted in Listing A.6 and for Glance is depicted in Listing A.7.

The authorization engine of OpenStack is evolving as additional blue-prints and feature propos-

als are raised and delivered by the open-source community on a daily basis. Currently, OpenStack

does not possess or support any variations of PBAC in its authorization schemes. As the demon-

stration and discussion of PBAC’s usefulness in a multi-tenant cloud IaaS exhibit, it is useful to

incorporate PBAC mechanisms into the OpenStack authorization platform for history-based, dy-

namic and finer-grained access controls.

5.3.2 Prototype, Experiment and Evaluation

This subsection describes and discusses the implementation of a proof-of-concept prototype that

realizes the above proposed architecture for enabling a PBAC-enabled authorization service within

the OpenStack platform. Specifically, this subsection demonstrates how the OpenStack Computing

(Nova) service can utilize the PBAC-enabled authorization for making access control decisions

in addition to the current authorization schemes Nova is employing. A similar process can be

applied on the other services in OpenStack. This dissertation implements the solution for Nova

and Glance components and evaluates the performance runtime for each component under different

experiments. Afterward, an analysis of the runtime results is provided.

OpenStack Nova Architecture

First, this subsection describes the current implementation details of the OpenStack Nova archi-

tecture. As depicted in Figure 5.6, the Nova components include:3

1. Web Dashboard is the potential external component that talks to the API, which is the com-

3This is a partial list of Nova components.
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Figure 5.6: Nova Implementation Architecture with PBAS Service

ponent that receives HTTP requests, converts commands and communicates with other com-

ponents via the queue or HTTP.

2. Auth Manager is a Python class that is responsible for users, projects and roles. It is used by

most components in the system for authentication purposes.

3. Network is responsible for the virtual networking resources.

4. Conductor is responsible for manage database operations.

There are two methods of communication between the service components: intra-service com-

munication is done via AMQP mechanisms while inter-service communication is done via HTTP

REST mechanisms. These are represented in Figure 5.6 as continuous lines and dashed lines re-

spectively. Communication between sub-components of the same service can be done locally, such

as invocation of the Auth Manager.

OpenStack Glance Architecture

This subsection provides a similar description about the current implementation details of the

OpenStack Glance architecture. As depicted in Figure 5.7, the Glance components include:4

1. Swift-api: Similar to the Nova API component, the Swift-api is responsible for receiving

HTTP requests from external Web Dashboard, converting commands and communicating
4This is a partial list of Glance components.
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with other components via the queue or HTTP.

2. Glance Registry: stores and manages metadata about images.

The communication between the service components is similar to the Nova communication.

PBAC-enabled authorization implementation

In order to incorporate and enforce PBAC-enabled authorization service, the following components

were implemented to extend Nova. Similar approach can be applied to Glance.

• PBAC Authorization Client: a Python class that implements an authorization method that

can be invoked whenever an API/ Scheduler/ Network/ Compute method is invoked. The

client sends HTTP requests to the PBAC authorization server.

• PBAC Authorization Server: a Python class that resides on the PBAC-enabled authorization

service. Receives HTTP requests from the PBAC authorization client, forwards the requests

to and receives the decisions from the PDP, and returns the decisions to the PBAC authoriza-

tion client.

• PDP, PIP, and PAP Python implementations that correspond to the associated architecture

components.

Since all access control policies are specified in JSON, a policy parser class, which can interpret

policy statements specifying PBAC rules in JSON, was implemented. A sample PBAC policy is

depicted in Listing A.6 (Nova policy) and in Listing A.7 (Glance policy).

Experiments

In order to evaluate the proof-of-concept prototype, the provenance service and the PBAC-enabled

authorization service were created and deployed on a Devstack installation of the OpenStack plat-

form. 5 The Devstack is under the OpenStack Grizzly release and is deployed on a virtual machine
5Note that this dissertation does not provide experiments for measuring provenance data update processes after

granted action request enforced. Having such results can further enrich the insights and belongs in future line of work.
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Figure 5.7: A PBAC-enabled Authorization Service for Glance Architecture

that has 4GB of memory and runs on Ubuntu 12.04 OS installation. In addition, provenance data

was generated to simulate life cycles of VM images and instances across tenants and stored in

Resource Description Format (RDF) [51] with the Python RDFlib library [7]. Measurements were

conducted on the execution performance of the following experiments.

Experiment 1 (e1): The execution time of a Glance command and a Nova command that

require checking the associated policy for RBAC requirements (the original DevStack system).

Experiment 2 (e2): The execution time of a Glance command and a Nova command that

require checking PBAC policy rules in addition to regular RBAC policy rules. In this experiment,

the PS and PBAS are deployed as integrated components of the Nova and Glance services.

Experiment 3 (e3): The execution time of the commands with the presence of an authorization

service which evaluates the RBAC policy the service maintains and additionally PBAC policy

where the authorization service also manage provenance service operations.

Experiment 4 (e4): The execution time of the commands with the independent presence of

both a provenance service and a PBAC-enabled authorization service. The PBAC-enabled autho-

rization service performs both normal RBAC requirements as well as PBAC requirements, where

Table 5.1: Evaluation of Glance Experiments (secs)
Traversal Distance Glance(e1) Glance(e2) Glance(e3) Glance (e4)

No PBAC 0.55 - - -
20 Edges - 0.575 0.607 0.642

1000 Edges - 0.612 0.788 0.852
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necessary provenance information is obtained from the provenance service.

For each experiment and each command, 10 runs were performed and the average run-time was

taken. As noted in [63], the size and shape of the underlying provenance graph pose significant

impact on query run-time. This dissertation evaluated PBAC queries that require depth traversal.

Specifically, the experiments were conducted to evaluate the two scenarios where graph traversal

takes distances of 20 and 1000 edges. These edge parameters were selected to respectively reflect a

normal and an extreme use case of a VM image and instance within a cloud IaaS environment. The

mock provenance data captures a VM image that is uploaded and modified multiple times and used

to create a VM instance, which is suspended, resumed, and taken as a snapshot by multiple cloud

users. A sample of this mock provenance data is depicted in Listing A.5. The policy is specified

following the informal grammar provided in Chapter 4.1.2. A sample policy rule can specify that

a user is only allowed to resume a VM instance if and only if he suspended that instance or a user

is only allowed take a snapshot of a VM instance if he uploaded the VM image that instance is

created from. A JSON equivalent of this policy is depicted in Listing A.8. The performance results

are given in Table 5.1 and Table 5.2.

Evaluation and Discussion

Based on the experimental results, the following observations are made. First, compared to the

regular execution (e1 approach) of Glance or Nova commands, the incorporation of PBAC ser-

vices (either e2, e3 or e4 approaches) introduces some overhead for traversal distance of 20 edges,

specifically between the 10 to 40 percent range. It is also observed that the deployment of separate

PBAS and Provenance services also introduces some overhead, specifically between the 5 and 18

percent range, as a result of the additional communication time between provenance service and

Table 5.2: Evaluation of Nova Experiments (secs)
Traversal Distance Nova(e1) Nova(e2) Nova(e3) Nova(e4)

No PBAC 0.75 - - -
20 Edges - 0.84 0.902 1.062

1000 Edges - 2.292 3.620 4.102
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PBAC service. It is observed that for the case of 1000 edges distance, the additional overhead is

as expected as depth traversals require recursive implementation. However, the overhead is much

more expensive for the Nova command in comparison to the Glance command. The reason for

this lies in the authorization implementation of the Nova command. Specifically, the execution of

the Nova command generates several authorization calls in contrast to only one from the Glance

command. As the number of edges increases, this additional cost increases exponentially.

This subsection identifies two potential approaches to improve on these performance results.

Firstly, it is possible to reduce the performance cost associated with the increase in traversed edges

by using meaningful, abstract edges that can equivalently capture the semantics of many base

edges. This can help reduce the number of edges and thus produce, for example, a 20 edges run-

time for a 1000 edges case. Secondly, in cases where numerous authorization calls are required

such as the case of the Nova command, it is possible to employ some caching mechanism to store

the result of the first authorization call and thus reduce the frequency of needed authorization calls.

This can potentially reduce the run-time of the Nova command to a similar run-time of the Glance

command. Overall, this approach produces feasible results for typical cases, and for extreme cases

some optimization approaches can achieve acceptable results.
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Chapter 6: PROVENANCE DATA SHARING FOR PBAC IN

MULTI-ORGANIZATION

Acknowledgment: The materials in this chapter are published in [62, 66].

In previous chapters, a framework of PBAC models, architecture and implementations were

presented for enhanced access control approaches in single systems and multi-tenant single-cloud

systems. PBAC approaches can also be applied in distributed systems or multi-cloud systems and

enable similar security benefits in the underlying systems. However, for PBAC to be deployed in

such systems, the concerns on provenance data sharing need to be addressed. This chapter provides

the preliminary works that have been done toward this goal and presents the concepts through a

group-centric collaboration environment involving multiple independent organizations.

6.1 Group-centric Secure Collaboration

Collaboration comes in many different forms and sizes. To facilitate scenarios where a well-defined

collaboration group exists, the concept of a Group-Centric sharing framework was recently intro-

duced [52,53]. In this inter-organizational collaboration framework, the participating organizations

collaborate through an agreed structure defined as a group. In a collaboration group, organizations

share resources, which are termed objects. A version control system is applied on these shared

Figure 6.1: A Conceptual View of Provenance Systems in A Group-centric Collaboration Envi-
ronment ( c©2011 IEEE [66])
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objects. Users, who are granted access, can perform collaborative work on these objects. Organi-

zations can create as many collaboration groups as necessary.

In [52], the administrative and operational aspects of the framework are addressed separately

with two component sub-models. The models are specified following the attribute-based UCON

model for usage control. The administrative sub-model is responsible for the management of

groups as well as users and objects in the collaboration groups. The set of corresponding oper-

ations include: Establish/Disband for managing the group, Join/Disband/Substitute for managing

users/admins, and Add/Remove/Export/Import/Merge for managing objects that are shared or lo-

cally created within the groups. The usage or operational sub-model, in contrast, is concerned

with the management of users’ activities within the collaboration groups as well as the respec-

tive organizations. The set of operations corresponding to these group-centric entities include:

CreateRO/CreateRW/Kill for data flow control, Read/Update/Create for usage of objects/versions,

and Suspend/Resume for controlling usage of objects/versions.

6.1.1 A Group Collaboration Environment for Data Provenance

In group-centric collaboration, in general there could be multiple organizations and these orga-

nizations could establish multiple collaboration groups for different purposes. For simplicity, it

is assumed that two participating organizations org1 and org2 have established one collaboration

group cg1. As identified in [52], there are two types of operations. Administrative operations are

performed to establish/disband groups together with group administrators, substitute group admin-

istrators, join/leave group members in a group, add/remove organization data to and from a group,

etc. This means provenance data includes operations not only on shared data but also on groups

and users. Usage operations are performed against data objects accessed via either an organization

or a collaboration group. Also, there are two types of data objects in a collaboration group. Firstly

there are pre-existing data objects shared by organizations in the collaboration group, and secondly

there are data objects that are natively created in the collaboration group.

It is assumed, as shown in Figure 6.1, that conceptually each organization facilitates its own
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provenance system which captures provenance data for usage operations against data objects man-

aged within the organization and shared by the organization in collaboration group as well as data

objects that are natively created in the group. The provenance system also captures provenance data

for administrative operations against the collaboration group, group members and data objects in

the organization and in the collaboration group.1 If mutually agreed, the participating organiza-

tions can query the other organization’s provenance data using the overlapping provenance data as

connectors.

6.1.2 Data Object Versioning Model

This dissertation uses the terms objects, versions and copies. It is assumed that one object can

have multiple versions, and each version can have multiple identical copies. The versions of an

object form a rooted tree structure, relating a parent version to its immediate children versions. For

provenance purposes each copy (identical in content) is considered as a separate “object.”

6.2 Provenance Data for Group-centric Secure Collaboration

In order to discuss utility of provenance data, it is necessary to identify operations that can be

performed on data objects and dependency of the data objects that are formed as a result of an

operation or a set of operations. This dissertation utilizes OPM notations to show these operations

and data object dependencies.

As mentioned earlier, [52] identified various administrative operations on groups, administra-

tors, regular users, and data objects as well as regular users’ usage operations on data objects in

a group. It is not necessary to capture all these operations in provenance data. Many of these

1There can be several different ways to structure the overall provenance system in a group collaboration environ-
ment. For example, it is possible that org2 is only allowed to capture provenance data for its own user’s operations
or operations on their local data objects while org1 captures as discussed above. This could make sense, for example,
in case a government organization collaborates with a contracting company where the contracting company’s access
to provenance data is restricted by the government. Another example could be that each participating organization
and shared group maintains its own provenance system. In this case, the provenance data captured and maintained by
collaboration group may need to be accessible by the participating organizations even after the collaboration group is
disbanded.
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Figure 6.2: OPM Diagrams for Establish/Disband Operations ( c©2011 IEEE [66])

operations are for authorization purpose and are not meaningful for provenance. Note that how

much information of an operation can be or should be captured in provenance data depends on

the participating organizations’ agreement and provenance system design details. Hence, there

could be many variations of the general theme of this section. Also, in the system of Figure 6.1

the provenance data captured in org1 could be different from those captured in org2 for the same

operation. Further, there could be other operations (e.g., object duplication and deletion) or the

existing operations could be refined to capture richer semantics (e.g., update operation can inte-

grate some content of another data object into the updating object). Here the main focus is on the

operations identified in [52].
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6.2.1 Provenance Data of Administrative Operations

This subsection discusses how administrative operations identified in [53] can be expressed in

OPM.

Establish(uSet, cg): Establish collaboration group cg. In general, collaboration group is es-

tablished together with a set of administrative users who represent their own organizations. While

there could be multiple ways to do this depending on how participating organizations agree, it is

assumed that one of these administrative users establishes collaboration group on behalf of other

users.2 Figure 6.2a) illustrates that the establish process “wasControlledBy" (shown as an arrow

labeled “c") org1.admin and “used" (shown as arrows labeled “u") org1.admin and org2.admin.

The artifact cg1 “wasGeneratedBy" (shown as an arrow labeled “g") the establish process. In

other words, an administrator of an organization org1.admin established collaboration group cg1

together with two group administrators org1.admin and org2.admin. Here, there is a subtype

of wasDerivedFrom (shown in dashed arrows) named as hadAdmin to show more meaningful

dependency of provenance data artifacts. The provenance data of the establish operation can be

also captured in a way discussed in [52]. This is shown in Figure 6.2c). Here, org1.admin created

a uSet, added a set of administrative users to the uSet and then used it to establish collaboration

group cg1. In addition, [52] discussed that, as shown in Figure 6.2d), firstly assoc attribute of cg1

was created/updated to include the participating organizations (all organizations found in uSet)

and secondly participating users’ cgadmin attributes were updated to include cg1 as part of the

groups they administer.

While these additional updates on related attributes are discussed in [52], these activities may

not need to be captured in provenance data. This is because capturing the “establish" operation as

shown Figure 6.2a) might be enough to provide sufficient provenance utility. Capturing additional

details of creation/update activities on attributes may not provide any additional significantt prove-

2This dissertation does not attempt to identify an exhaustive list of the possible scenarios for establishing a collab-
oration group. Rather the dissertation shows a couple of possible ways how provenance data for collaboration group
establishment can be expressed using OPM and further discuss the captured provenance data. This also applies to the
other operations discussed here.
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Figure 6.3: OPM Diagrams for Join/Leave Operations ( c©2011 IEEE [66])

nance utility. Specifically, Figure 6.2a) is essentially enough to identify who created the group

or who were the participating organizations or administrative users of the group. Capturing how

uSet, accoc or cgadmin attributes were created/updated can be useful only if it is required to ver-

ify some specific aspects such as who added a certain user in uSet, which administrative user is

added first, etc. At the same time, attribute updates shown in Figure 6.2c) and d) are just one way

of conducting the details of the operation and can be subsumed in the approach shown in Figure

6.2a).

Disband(uSet, cg): Disband group. The provenance data of this operation allows users to

query who disbanded the collaboration group. While [52] requires agreement of all administrative

users for this operation, provenance data only captures who conducted the operation and does not

reflect the authorization processes. Figure 6.2b) shows an administrative user org1.admin who

disbanded collaboration group cg1 and a set of administrative users uSet. Capturing provenance

data of the establish and disband operations allows users’ to query pedigree and disposition of

the collaboration group. This also means that the group is considered an OPM artifact.

Join/Leave(u1, u2, cg): Join/Leave user to/from group.3 Suppose an administrative user u1

from a participating organization included a user u2 as a member of collaboration group cg1.

The provenance data of this operation can be expressed in OPM as shown in Figure 6.3a). Here,

3Although join and leave operations are shown in a single process in Figure 6.3 for convenience, they are two
separate operations and occurrence of each operation should be captured by a separate process.
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Figure 6.4: OPM Diagrams for Add/Remove Operations ( c©2011 IEEE [66])

“join/leave" operation processes were controlled by u1 and used u2 and cg1, and a new cg1 was

generated from the “join/leave" processes. In [52], a necessary update activity on the attribute

ucg of u2 is captured to reflect that the user is now a member of cg1 (see Figure 6.3b)). However,

as similarly discussed in the establish operation above, this update can be seen as one of multiple

ways of performing the “join/leave" operations. For example, instead of using the ucg attribute

of a user, the ucg′ attribute of cg1 can be used to capture all the group members. Therefore,

Figure 6.3b) can be subsumed in a more general operation description shown in Figure 6.3a).

In the Figure 6.3a), two subtypes of “wasDerivedFrom" named “hadJoinedCgMember" and

“hadLeftCgMember" were introduced to capture the dependencies of provenance data artifacts.

Add(u, o, v, org, cg,): Add object version from org to group. The add operation creates a

copy of an object version from an organization to a collaboration group. In Figure 6.4a), u1

added a copy of an object org1.o1v1 from an organization org1 to a group cg1. A subtype of

“wasDerivedFrom" named “wasCopyOf" is identified to show a node dependency. Here, org1

is used as a source entity and cg1 is used as a target entity. While both source and target entities

are captured here, if this provenance data is captured by org1, the source entity information may

not need to be captured since it is always org1. However, if this provenance data is captured by

organizations other than the source entity, say org2, the provenance data in org2 needs to include

both the source and target entities information. While the source organization information could

be found in source data object, this dissertation does not assume that this is always the case. Hence

95



Figure 6.5: OPM Diagrams for Substitute/Import Operations ( c©2011 IEEE [66])

the source entity information is shown explicitly in the OPM diagram.

Remove(u, o, v, cg): Remove object version from group. The remove operation deletes a copy

of an object version from the entity where it is located. In Figure 6.4b), u1 removed cg1.o1v1 from

cg1.

Substitute(u1, u2, cg): Substitute group admin. The substitute operation removes an existing

administrative user and add another administrative user in a collaboration group. In Figure 6.5a),

u1 substituted herself with u2 as an administrative user in cg1. The roles of these used edges are

captured in u(role) format. In Figure 6.5a), cg1, u1 and u2 are used with roles adminGroup,

removedAdmin and addedAdmin, respectively. Two subtypes of “wasDerivedFrom" named

“hadRemovedAdmin" and “hadAddedAdmin" are identified to show the node dependencies.

The OPM diagram also shows a generic “wasDerivedFrom" arrow to capture dependency be-

tween the previous and current state of cg1.

Import(u, o1, v1, o2, cg, org): Import a version from group to organization. The import oper-

ation copies a version of an object that was natively created in collaboration group into an organi-

zation. In Figure 6.5b), an object version cg1.o1v1 was copied from cg1 to an organization org1

and named as org1.o2v1. While org1.o2v1 is an exact copy of cg1.o1v1, org1.o2v1 is treated as

a new object. The “wasCopyOf" shown in Figure 6.5b) shows the dependency of the two data

objects. While these two copies are considered different objects and cannot be connected in a

version control system, using the dependency arrow wasCopyOf , users in collaboration group or

in an organization can trace the usage information of a particular object version that are imported
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Figure 6.6: OPM Diagrams for Merge Operation ( c©2011 IEEE [66])

to another organization even if the user does not belong to the organization. While [52] discusses

“export" operation to capture the fact that all the administrative users should agree to make an

object version exportable, this operation is identified for authorization purpose, hence not included

in this dissertation.

Similar to the add operation, provenance data for the import operation may or may not include

the source entity information depending on whether the organization of the provenance system is

the one who performed the operation or not.

Merge(uSet, cg, o, v, org): Merge a version from group to organization. The merge operation

creates a newer object version of an existing object in an organization. This new version created in

the organization is a copy of an object version that is created in collaboration group as a result of

the update operation on a version of the object that is previously added from the organization to

the group. (Additional details on the update operation are discussed in the next subsection.)

The merge operation needs some precedent operations that should have occurred in advance.

At least one add operation and then one update operation on the added version are necessary to

perform amerge operation on the updated version. In Figure 6.6, org1.o1v1 was added to cg1 then
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Figure 6.7: OPM Diagrams for Read/Update/Create Operations ( c©2011 IEEE [66])

the added version cg1.o2v1 was updated in cg1.o2v2 which then is merged back into the original

organization org1 as a new version of org1.o1v1 shown as org1.o1v4. Here, the new version

org1.o1v4 is an exact same copy of cg1.o2v2.4 Figure 6.6 shows that in the merge operation,

cg1 was used as a source entity (shown as u(se)) and org1 was used as a target entity (shown as

u(te)). Two subtypes of “wasDerivedFrom" named “wasCopyOf" and “wasNewV ersionOf"

are used to show the dependencies of object artifacts. Having the dependency of data objects allows

users to trace information flow and usage history on the various versions of a particular object as

well as copies of the versions. For simplicity, agent nodes for add, update and merge operation

processes are omitted in Figure 6.6 though every process needs an agent.

6.2.2 Provenance Data of User’s Usage Operations

This section discusses provenance data of user’s usage operations identified in [52]. [52] assumes

that a user represents a human who creates a subject in a system and a subject exercises operations

4Note that the merge operation creates an exact copy of an object version in the collaboration group into an existing
version tree in the organization where the original version in the collaboration group is added from. This is different
from merging two versions found in a same version tree of an object within an organization. While the latter could
be useful, this dissertation does not consider this kind of “content merge" operation. For example, if org1.o1v1 was
updated within org1 after it was added to cg1, org1.o1v4 is still a new version of org1.o1v1 but not a new version of
the updated version of org1.o1v1.
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on behalf of the user. While user-subject distinction is critical for information flow control in

group collaboration setting, provenance data only capture operation events that already occurred

in a system and do not worry about how the operations are authorized. Therefore, as shown in

Figure 6.7, subjects are used as agents who controlled operations. This is not necessarily critical

in this dissertation.

Read(s, o, v, entity): Read an object version. The read operation occurred on an object ver-

sion by a subject in an entity. Entity information is captured if an object version is read in col-

laboration group since there could be multiple groups in a single provenance system. Provenance

data of read operation against an imported or merged object in an organization is not likely to be

captured by a provenance system of another organization. However it may need to be traced by

another organization since the data object may have been used or updated earlier by the tracing

organization. For this, provenance data needs to include source entity information. This applies to

both update and create operations discussed below.

Update(s, o, v, entity): Update an object version. Similar to the read operation, the update

operation occurred on an object version by a subject in an entity but creates a new version. In Figure

6.7b), cg1.o1v1 was updated and a new version cg1.o1v2 was created. In the diagram, two subtypes

of “wasDerivedFrom" namedwasNewV ersionOf andwasUpdatedInwere identified to show

the node dependencies. Note that, in the merge operation diagram (Figure 6.6), the entity node

and wasUpdatedIn arrow are not shown for simplicity.

Create(s, o, entity): Create an object. The create operation creates a data object in an entity.

This is an initial version of the object. In Figure 6.7c), cg1.o1v1 was created in cg1 hence cg1.o1v1

has a wasCreatedIn edge to cg1.

In addition to these three operations, [52] identified createRO and createRW operations as

well as kill, suspend and resume operations. These operations are not discussed in this disserta-

tion since they are identified mainly for authorization and information flow control purposes.
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Figure 6.8: A Taxonomy of Provenance Data Integration in Multi-Provenance Systems ( c©2012
IEEE [62])

6.3 Provenance Data Sharing Approaches

In a provenance-aware environment, as data objects are created and used, the transaction infor-

mation is captured as provenance data. Provenance-based access control utilizes the captured

provenance information to control access to the underlying data. In a group-centric collaboration

environment, data objects are shared and modified by multiple organizations/systems while the

relevant provenance data are captured and stored in the local systems. While captured provenance

data are readily available for access control within the local system, provenance-based access con-

trol in a group-centric collaboration environment requires integrated use of provenance data from

other collaborating systems for effective access control. However, some provenance information

maintained by a system may be too sensitive to be directly viewed or used by other systems. This

dissertation demonstrates and discusses the issue relating the incorporation of an access control

model in the context of group-centric secure collaboration environment, where multiple prove-

nance systems act independently and therefore require some form of provenance data sharing for

access control purposes.

For seamless use of provenance data in multiple provenance systems, there potentially are at

least two approaches [62]. As shown in Figure 6.8, one approach is by utilizing cascading sub-

queries. The other approach is by utilizing sticky provenance data which are transmitted together

with an associated data when the associated data is added/moved to another collaborating entity

(organization or collaboration group).
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Using Cascading Subquery

When an access request is parsed and a corresponding query is generated, the query is executed

and evaluated against the local provenance system. Certain path patterns, however, would lead

to objects that are added copies from different system entities. The local provenance system then

does not contain sufficient information to make an access decision. It becomes necessary to ask

for provenance information in another provenance system entity. In other words, subqueries need

to be generated and evaluated against the provenance graphs maintained by other systems. These

queries are generated from the original query with modifications of the path patterns to remove

those already traversed. As a provenance data traversal can potentially span across many system

entities, different subqueries may become necessary every time such a cross-system transition

occurs. This type of query is labeled a cascading subquery.

In a uni-provenance setting, evaluating a query returns a set of resulting nodes upon which ac-

cess control decisions are made. In a multi-provenance setting, once a provenance system receives

a cascading subquery, there are at least three different ways such a subquery can be handled. For

each case, different granularity of additional information is required from the requesting entity.

Specifically, the receiving system can utilize its provenance data to return

• Y or N: (startingNodenew,dPathnew,rulenew) must be transmitted.

• Resulting Nodes: (startingNodenew,dPathnew) must be transmitted.

• Provenance Data Set: (startingNodenew) must be transmitted.

In the first case, the receiving provenance system is asked to make the access control decision.

This could be the case when either the requesting entity does not possess enough computation

resources to perform the evaluation itself or the receiving entity does not allow direct access to

its provenance data. One such an example could be found in group collaboration between a gov-

ernment agency and a contracting company where the agency is not allowed to reveal the details

of its provenance data. For evaluating such a subquery, the receiving provenance system requires
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additional information. In particular, it requires the recomputed startingNodenew, dPathnew, and

rulenew. Here, the rulenew is necessary for the receiving provenance system to be able to make a

decision for the requesting entity.

In the second case, the receiving provenance system requires the recomputed startingNodenew

and dPathnew to evaluate the subquery but does not need make any access control decision for the

requesting entity. This could be the case of a collaboration between a government agency and a

contract company where the agency (requesting system) requires the contract company (receiving

system) to reveal its provenance data as the agency may not want to reveal (part of) its access

control policy.

In the third case, the receiving provenance system receives only the recomputed startingNodenew.

Here, the system returns all provenance entities reachable by a recomputed startingNodenew.

Similar to the second case, access control decisions are made by the requesting system.

Sticky Provenance Data

Another approach for resolving the stated issue is through the use of sticky provenance data. Dis-

cussion of this approach is explained with the example scenario as described in details in [62]

With sticky provenance data available in the local system, a cascading query may not be nec-

essary to obtain provenance information necessary in making access control decisions. Rather, a

locally generated query can be evaluated and completely executed against the local provenance

graph similar to how a query under a uni-provenance system is treated. However this may not

always be the case. The sticky provenance data of an object/version contains all the provenance

information of that object/version up to the point in time when the information flow takes place.

This means the transactions on the source data (Org1.o1v2 in the example) that occur after the

information flow (phase 2 in the example) are not captured in the sticky provenance data unless the

sticky provenance is constantly modified to reflect all the transactions that occur on all the previous

versions (Org1.o1v1 in the example) of the added object (Org1.o1v2) and the added object itself.
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Benefits of Sticky Provenance Data

There are multiple advantages associated with using sticky provenance data. One main advan-

tage is the elimination of repeating computational efforts required from the source system. More

specifically, once an organization data object is added to a group, policy rules for subsequent ac-

cess request may base the decision evaluation on the provenance information of the organization

data object. As discussed above, if no stick provenance data is used, some forms of cascading

subqueries may be passed to the organization asking for results. The organization then would have

to spend its computation resources in satisfying such requests. By sending sticky provenance data

together with the data object copy, the requests and queries can be evaluated and answered locally.

Issues of Sticky Provenance Data

There are also multiple issues related to the static nature of sticky provenance data. Essentially,

once sticky provenance data is moved to a new system entity together with the copy of an associ-

ating data object, the sticky provenance data only contains provenance information of the copied

data object up to the point in time when such information flow occurs. Any processes occurring

upon that object version thereafter are not captured by the sent sticky provenance data.

While this should be fine for the queries that need only backward traversal of provenance

data, if a query requires checking all the transactions occurred against all of the related objects,

forward traversal of provenance data may be necessary and the available sticky provenance data

are not likely to be enough for access control decision. For example, suppose a policy rule which

dictates that no Update actions can be performed on a group version if the original organization

object version had been updated in some ways (application-specific context). In the context of

the scenario depicted in Figure 6.9, granting access to a request to update CG1.o2v2 requires no

modifications had been done on Org1.o1v2. If the query only checks provenance data obtained

in the sticky provenance data of (CG1.o2v1) stored in CG1, then the access request is granted.

However, as shown in Org1, some modifications had been done on Org1.o1v2 during phase 2 and
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Figure 6.9: Sticky Provenance Data in Simplified Scenario ( c©2012 IEEE Nguyen2012IRI)

generated Org1.o1v3 at the current point in time. Such provenance information is not captured in

the sticky provenance data of (Org1.o1v2) because at the point in time when sticky provenance

data of (Org1.o1v2) was sent to CG1, such process had not occurred.

For sticky provenance data to be useful and reliable in such use cases, there require some

mechanisms to keep the sticky provenance data up-to-date at all points in time or require addi-

tional traversal of provenance data that are not reflected in sticky provenance data. In practice,

keeping up-to-date sticky provenance data could be quite costly or even unrealistic. This is further

complicated as the complexity of the group-centric collaboration environment becomes larger.

Consider the scenario in Figure 6.10 which depicts information flow across three provenance

systems where real-time updates of sticky provenance data are not available. Here, an object o1v2

is added to the collaboration group. Within the group, the added copy o2v1 is further updated

and eventually generates o2v2, which is then added to a different organization Org2. In this

information flow scenario, when o1v2 is added to CG1, all provenance data of o1v2 and the add
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Figure 6.10: A “Sticky" Multi-Provenance Scenario ( c©2012 IEEE Nguyen2012IRI)

transaction information are transmitted to cg1 together with o1v2 and stored in sticky provenance

data of o2v1. When o2v2 is added to Org2, it seems logical to combine sticky provenance data

of o2v1 to sticky provenance data of o3v1. However, this is largely dependent on the application-

specific context and may not be the case. In other words, sticky provenance data of o3v1 may or

may not contain sticky provenance data of o2v1. For example, while a government agency Org1

may trust CG1 and shares its provenance data with CG1 using sticky provenance data, it may

not allow further dissemination of the shared sticky provenance data to a contract company Org2.

Furthermore, as the number of local provenance systems increases, the configuration and efforts

required for updating sticky provenance data can grow exponentially in complexity.

Regardless, sticky provenance data can prove to be useful in some cases where forward traver-

sal is not necessary.
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Chapter 7: CONCLUSION AND FUTURE WORK

7.1 Summary

This dissertation proposed the design and demonstrated the capabilities of a framework of Provenance-

based Access Control models to enhance the security of any provenance-aware computing environ-

ment. Specifically, the models make extensive use of a provenance data model that expresses the

causality dependency relationships between primary provenance data entities in directed-acyclic

graph form. Rich expressions of dependency path patterns and associated abstracted names con-

structs enable the specification of richer policy with utilization of provenance-aware rules in access

control management. This allows the achievement of traditional as well as enhanced classes of Dy-

namic Separation of Duties. Furthermore, PBAC policies can naturally conform and be adapted

into industry-compliant XACML policies. The implementation and evaluation of the PBAC mod-

els, through a proof-of-concept prototype, are done in the context of a hypothetical homework

grading system. The results showed that with further work the approach can be feasible in a prac-

tical system deployment.

There also has been progress in adapting PBAC into a cloud Infrastructure-as-a-Service plat-

form. This dissertation identified various architecture that enable provenance-awareness and PBAC

capabilities within a single, multi-tenant cloud. The initial proof-of-concept implementation and

evaluation demonstrated reasonable feasibility. There were also investigations on the aspects of

deploying PBAC in a multi-system or multi-cloud environment. In this dissertation, the initial

progress in this direction is discussed.

7.2 Future Work

This section describes and discusses several directions for future work.
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7.2.1 Extended PBAC Models

The proposed base model is a foundational model for provenance-based access control and can

be further extended for additional security enhancements. A crucial extension that enhances the

base model is allowing user-declared provenance data in addition to the system-computed base

provenance data. This means a user can declare a specific dependency between entities using

a dependency name that is predefined by the system and available to the user. The user-declared

dependency may cause conflict with the dependencies with the same name that are computed using

base provenance data. For example, in Figure 3.2, a user au2 may declare another user, say au6

as an actual reviewer who generated a review o2v1 for the object o1v3 while the system-computed

dependency points to au2 as a reviewer based on the base provenance data. One approach to

address this issue is by explicitly identifying the intentions of the declaration. For this, there are

at least three types of intentions: inclusive, exclusive and denying types. The inclusive-intent

dependency means, for example, both au2 and au6 are considered as reviewers who created o2v1.

If au2 declared au6 as an exclusive reviewer, the system computed dependency is voided. In

addition, if allowed, au2 may deny that he is not the actual reviewer. Furthermore, this extended

model also needs to resolve an authorization issue of who can declare what kind of dependency

intentions under which circumstance. The proposed base model can provide a concrete foundation

for this extension and further pursue in this direction can further enrich the PBAC models and

enhance overall system security.

7.2.2 Implementation of Provenance Capture Approaches for Provenance Service

In this dissertation, while a major emphasis is placed on the utilization of provenance data for

access control purposes, the issue on how provenance data can be collected, captured and managed

is also a significant aspect of provenance-aware systems.

There are several implementation frameworks for capturing provenance data with the intent of

security in mind. The PASS system [58] aims to capture provenance information at the file level.
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The PLUS system [22] captures provenance at the application level and use the information for

taint analysis to handle insider threat [10]. In order to retrieve information from the provenance

storage, many implementation of query languages are available. Park et al [66] employed SPARQL

[40] with GLEEN [33] in a group collaboration environment. PQL [6] is a language in development

that would provide useful functionality for provenance data queries. Other works [37, 80] focuses

on provenance collection for distributed systems.

Provenance service prototype for OpenStack

This subsection identifies and describes three different approaches toward collecting provenance

data in a cloud service:

• Logs extraction: as all events are collected and stored in a logging system, these data can

be extracted and filtered into provenance data. This approach, however, is limited by the

logging mechanisms and can introduce large overhead.

• Database I/O instrumentation: as all executed action instances ultimately involve a database

read/write operations, it is possible to get according provenance data by collecting useful

context information whenever a database read/write operations succeed. In Nova, it is pos-

sible to instrument the component responsible for these database operations, the Conductor

component.

• Communication queue: As all communication between services in Nova is done via the

use of a messaging queue (RabbitMQ technology), messages containing useful provenance

information can be extracted from the queue for conversion into provenance data.

The components that can be implemented for the provenance service include:

• ProvService Client: a Python class resides within Nova architecture that has capabilities

to perform the second and third approach to collect system events as outlined above. This

component is also responsible for communicating with the ProvService server
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Figure 7.1: A Provenance Service for Nova Architecture

Figure 7.2: A Provenance Service for Glance Architecture

• ProvService Server: a component that resides within the provenance service, receives and

handles HTTP requests from ProvService clients.

• PDC and PDM Python implementations that correspond to the associated architecture com-

ponents.

Figures 7.1 and 7.2 depict potential implementation architecture for the Nova and Glance ser-

vices in OpenStack. Designing and running more experiments can further consolidate the feasibil-

ity of the approach and prototype.
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Appendix A: ADDITIONAL EXAMPLES

A.1 XACML Examples

Listing A.1: Sample XACML request

<Request>

<Subject SubjectCategory="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject">

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id" DataType="http://www

.w3.org/2001/XMLSchema#string"><AttributeValue>au4</AttributeValue></Attribute>

</Subject>

<Resource>

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id" DataType="http://

www.w3.org/2001/XMLSchema#string"><AttributeValue>o2v0</AttributeValue></Attribute>

</Resource>

<Action>

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id" DataType="http://www.

w3.org/2001/XMLSchema#string"><AttributeValue>review</AttributeValue></Attribute>

</Action>

</Request>

Listing A.2: Sample XACML response

<Response xmlns="urn:oasis:names:tc:xacml:1.0:context" . >

<Result>

<Decision>

Permit

</Decision>

<Status>

<StatusCode Value="urn:oasis:names:tc:xacml:1.0:status:ok"/>

</Status>

</Result>

</Response>

Listing A.3: Sample XACML policy

<Policy PolicyId="replacePolicy"

RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:ordered-permit-

overrides">

<Target>

...
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<Actions>

<Action>

<ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">replace</AttributeValue>

<ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"

DataType="http://www.w3.org/2001/XMLSchema#string" />

</ActionMatch>

</Action>

</Actions>

</Target>

<Rule RuleId="ReplaceRule" Effect="Permit">

<Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:and">

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-is-in">

<Apply FunctionId="provenance-query-SPARQL">

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only">

<SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"

DataType="http://www.w3.org/2001/XMLSchema#string" />

</Apply>

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">

hasPerformedActions:hasAttributeOf(actingUser)

</AttributeValue>

</Apply>

<Apply FunctionId="provenance-query-SPARQL">

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only">

<ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

DataType="http://www.w3.org/2001/XMLSchema#string" />

</Apply>

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">wasUploadedBy

</AttributeValue>

</Apply>

</Apply>

</Rule>

<Rule RuleId="FinalRule" Effect="Deny" />

</Policy>
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A.2 Provenance Data Samples in RDF-XML format

Listing A.4: Sample HWS Provenance Data in RDF-XML format

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:j.0="http://peac/hwgs#" >

<rdf:Description rdf:about="http://peac/hwgs#replace99154">

<j.0:wasControlledBy rdf:resource="http://peac/hwgs#au1"/>

<j.0:usedInput rdf:resource="http://peac/hwgs#o1v99153"/>

</rdf:Description>

<rdf:Description rdf:about="http://peac/hwgs#replace18721">

<j.0:wasControlledBy rdf:resource="http://peac/hwgs#au1"/>

<j.0:usedInput rdf:resource="http://peac/hwgs#o1v18720"/>

</rdf:Description>

...

<rdf:Description rdf:about="http://peac/hwgs#o3905v0">

<j.0:wasGeneratedByReview rdf:resource="http://peac/hwgs#review3905"/>

</rdf:Description>

<rdf:Description rdf:about="http://peac/hwgs#o1v71556">

<j.0:wasGeneratedByReplace rdf:resource="http://peac/hwgs#replace71556"/>

</rdf:Description>

<rdf:Description rdf:about="http://peac/hwgs#o1v52045">

<j.0:wasGeneratedByReplace rdf:resource="http://peac/hwgs#replace52045"/>

</rdf:Description>

<rdf:Description rdf:about="http://peac/hwgs#o1v49959">

<j.0:wasGeneratedByReplace rdf:resource="http://peac/hwgs#replace49959"/>

</rdf:Description>

...

</rdf:RDF>

Listing A.5: Sample Cloud IaaS Provenance Data in RDF-XML format
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:j.0="http://peac/osic#" >

<rdf:Description rdf:about="http://peac/osic#modify_image2818">

<j.0:wasControlledBy rdf:resource="http://peac/osic#au1"/>

<j.0:usedInput rdf:resource="http://peac/osic#o1v2817"/>

</rdf:Description>

<rdf:Description rdf:about="http://peac/osic#modify_image3339">
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<j.0:wasControlledBy rdf:resource="http://peac/osic#au1"/>

<j.0:usedInput rdf:resource="http://peac/osic#o1v3338"/>

</rdf:Description>

<rdf:Description rdf:about="http://peac/osic#get_image2383">

<j.0:wasControlledBy rdf:resource="http://peac/osic#au1"/>

<j.0:wasControlledBy rdf:resource="http://peac/osic#au2"/>

<j.0:wasControlledBy rdf:resource="http://peac/osic#au3"/>

<j.0:usedInput rdf:resource="http://peac/osic#vmi2v0"/>

</rdf:Description>

...

...

</rdf:RDF>

A.3 Sample SPARQL Queries

Query (1): searches for all acting users who had replaced any previous version of o1v50.

PREFIX hw: <http://peac/hwgs#>

SELECT ?actingUser

WHERE {

hw:o1v50

((hw:wasGeneratedByReplace)

/(hw:usedInput/hw:wasGeneratedByReplace)*

/hw:wasControlledBy)

?actingUser.

}

Query (2): searches for all objects/versions that were submitted by hw : au2.

PREFIX hw: <http://peac/hwgs#>

SELECT ?object

WHERE {

?object
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(hw:wasGeneratedBySubmit*

/hw:wasControlledBy)

hw:au2.

}

Query (3): searches for all virtual machine objects/versions that were modified in the Testing

tenant.

PREFIX hw: <http://peac/osis#>

SELECT ?vmobject

WHERE {

?vmobject

(osis:wasGeneratedByModify*

/osis:hasAttribute(tenant))

osis:Testing.

}

A.4 Sample JSON Policies

A.4.1 Regular OpenStack Policies

Listing A.6: Default Nova policy in JSON

1 {

2 "context_is_admin": [["role:admin"]],

3 "admin_or_owner": [["is_admin:True"], ["project_id:\%(

project_id)s"]], [1]

4 "default": [["rule:admin_or_owner"]], [2]

114



5 ...

6 "compute_extension:flavormanage": [["rule:admin_api"]],

[3]

7 }

Listing A.7: Default Glance policy in JSON

1 {

2 "context_is_admin": "role:admin",

3 "default": "",

4

5 "add_image": "",

6 "delete_image": "",

7 "get_image": "",

8 "get_images": "",

9 "modify_image": "",

10 "publicize_image": "role:admin",

11 "copy_from": "",

12

13 "download_image": "",

14 "upload_image": "",

15 ...

16 }

A.4.2 PBAC-enabled OpenStack Policies

Listing A.8: PBAC Nova policy in JSON

1
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2 "compute.get_all":{

3 "Rules":[

4 {

5 "id":"rule1",

6 "Effect":"Allow",

7 "Conditions":[

8 {

9 "cond1":[

10 {

11 "in": ["\%(sub_id)s"]

12 }

13 {

14 "provquery":["\%(vm_id)s","wasCreatedBy"]

15 },

16 ]}]

17 }]

18 }
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